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Some Major Technical Obstacles to MDO

* Modeling

— Analysis-based functions are expensive and
not computationally robust

— Difficult to obtain reliable and affordable
derivatives

* Optimization
— Desired disciplinary autonomy is in conflict
with robust and efficient optimization

— Algorithms for analysis-based design are in
their infancy



Outline

« Part I: Approximation and Model Management
Optimization (AMMO) Framework

— Optimization strategy
« Reduce cost of using high-fidelity analyses
« Maintain convergence to high-fidelity answers

« Part Il: MDO Problem Synthesis and Solution

— MDO problem formulations and attendant
optimization algorithms
* Preserve maximum disciplinary autonomy
« Solve the problem reliably and efficiently



Part I
Approximation and Model

Management Optimization
(AMMO)




ASCoT Project (1998-2002)
(Aerospace Systems Concept to Test)

Project Vision

Physics-based modeling and simulation with sufficient speed and accuracy for
validation and certification of advanced aerospace vehicle design in less than 1 year

Project Goal

. - ) - : ~ Physics- "
Proylde next ge_neratlon analy5|s & [/ [} Based Flow \. Risk-Based Design
design tools to increase confidence | Modeling
and reduce development time in \ - ight Dynamics
aerospace vehicle designs W deling &

Objective

» Develop fast, accurate, and reliable
analysis and design tools via ,
fundamental technological advances in: Computational % " Computational

- Physics-Based Flow Modeling Aeroelasticity Electromagnetics

- Fast, Adaptive, Aerospace Tools
(FAAST) (CFD and Design)

- Ground-to-Flight Scaling
- Time-Dependent Methods
- Design for Quiet

- Risk-Based Design

Benefit
* Increased Design Confidence
* Reduced Development Time



Collaborators
(chronological order)

FY 86-present

N.M. Alexandrov (MDOB)

Algorithms and demonstrations

FY97-00 R.M. Lewis (ICASE) Algorithms
FY98-99 C.R. Gumbert (MDOB) Variable-resolution CFL3D models
FYoa9 L.L. Green (MDOB) Variable-resolution FLOMG models
FY98-99 P.A. Newman (MDOB) CFD consulting
FYo00 W.K. Anderson (AAAC/CSMB) | FUN2D, FUN3D, adjoint solvers

FY0l-present

E.J. Nielsen (AAAC/CSMB)

Variable-physics FUN2D/FUN3D models

FY0l-present

M.A. Park (AAAC/CSMB)

Meszsh adaptation

FY0l-present

A. Yates (W & M student)

Derivative-free methods

FY02-present

J.A. Samareh (MDOB)

Geometry parameterization
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Limiting factors

 Extreme expense of repeated analyses

— Example: turbulent computation on 1 M grid points
(Nielsen and Anderson)
« 1 day for submission, 3-4 days in queue

8 hours per 1 design cycle on 112 CPU

— Flow solution

— Adjoint solution with 20-39 grid sensitivities and gradient
evaluations

— Line search with 5-6 grid moves and flow solutions

« 10 design cycles = 9000 CPU hours for a simple single-
point design

 Function and derivative evaluations prone to
fallure away from the nominal design

« Derivative-free optimization is not an option
due to computational expense



Approach

Engineering
— A variety of approximations and models available and
used for along time

— Ad hoc optimization techniques

Mathematical programming
— Generally limited to local Taylor series models
— Rigorous and robust optimization techniques

AMMO

— Use of engineering approximations and models
— Rigorous and robust optimization techniques

— Can be used with any gradient-based algorithm

Modeling and grid difficulties also being
addressed



AMMO ldea

Conventional Optimization |OPi€ctive: reduce cost of design | \y,n1q
optimization with analyses

High-fidelity codes Low-fidelity codes
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AMMO gives Navier-Stokes answers with five-fold savings




Design Optimization Problem
 The analysis problem: Given X, solve system
A(X,u(x)) =0

for u that describes the physical behavior of the system

 The design problem (canonical formulation): Solve
minimize f(x, u(x))
subjectto c;(x, u(x))=0,I10E
c.i(x,u(x)) <0, 10|
X, € XX

where, given X, u(x) is determined from A(x,u(x)) =0
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Convergence vs. Performance

e Convergence relies on ensuring local similarity of trends

— Let f be some lower-fidelity model of f. At each major iteration k, f is
required to satisfy

f(zx) = f(zx), Vf(zr) = VF(zw)
Easily enforced when derivatives are available.

e Enforcing first-order consistency: multiplicative 3-correction, Chang et al. 1993

— Given f(x) and fi,(x), define 3(x) = f{ﬂ,(?m}}

— Given zp, build By () = B(xr) + VB(zr) T (= — =)
— Then fi.(z) = Br(x) fio(x) satisfies the consistency conditions at z/,
e Practical efficiency is problem/model dependent and is influenced by the ability to

transfer computational load onto low-fidelity computation; at worst, AMMO is
conventional optimization.
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Variable-Fidelity Models Used in AMMO

Variable accuracy
— Converge analyses to user-specified tolerance

Variable resolution

— Single physical model on meshes of varying degree of
refinement

Variable-fidelity physics
— E.g., in CFD, physical models range from inviscid,

irrotational, incompressible flow to Navier-Stokes
equations for viscous flow

Other
— Data-fitting models, reduced-order models

Study favorable and unfavorable relationship
between models

13



Demonstration Problems: Aerodynamic Optimization

shape flow conditions
l state variables,
integrated quantities
g e.qg.,
CFD analysis 5.9:. &) =

Variable-resolution models
Variable-fidelity physics models

lift
drag

L

minimize Integrated quantities, suchas — & (

Jor C'p (drag coefficient)

subject to constraints on, e.g., pitching and rolling moment coefficients, etc.

x < ax < xy,

14



Managing Variable-Fidelity Physics Models: Multi-Element Airfoil
AIAA-2000-4886, Alexandrov, Nielsen, Lewis, Anderson

A two-element airfoil designed to operate in transonic
regime — inclusion of viscous effects is important

Governing equations — time-dependent Reynolds-
averaged Navier-Stokes

Flow solver — FUN2D, unstructured mesh methodology
(Anderson, 1994)

Sensitivity derivatives — discrete adjoint approach
(Anderson, 1997)

Conditions:
- M_,=0.75
— Re=9x 10°

— a =1°(global angle of attack)
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Multi-Element Airfoil, cont.

e Hi-fi model — FUN2D analysis in RANS mode
e Lo-fi model — FUN2D analysis in Euler mode

e Computing on SGI Origin™ 2000, 4 R1OK processors

Viscous mesh: Inviscid mesh:
1947 nodes and 3896 triangles
N Al .o A

- i . P ST
Ll II.-'r 4 .-'z

t/analysis =~ 21 min t/analysis =~ 23 sec

t/sensitivity =~ 21 or 42 min t/sensitivity = 100 or 77 sec
16



Multi-Element Airfoil: Viscous Effects

Frama 0o | 30 Aug 2000 | FUNED Frama 001 | 30 Aug 2000 | FUNZD

Mach number contours, viscous model Mach number contours, inviscid model
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e Boundary and shear layers are visible in the viscous case.
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Multi-Element Airfoil: Computational Experiments

e Objective function: minimize drag coefficient subject to bounds on variables
e Case 1: (for visualization)

— Variables: angle of attack, y-displacement of the flap

— Solve problem with hi-fi models alone using a commercial optimization code
(PORT, Bell Labs)

— Solve the problem with AMMO, PORT used for lo-fi subproblems
e Case 2:

— Variables: angle of attack, y-displacement of the flap, geometry description of
the airfoil; 84 variables total

— Same experiment

18



Multi-Element Airfoil: Models

e Time/function for inviscid model negligible compared to viscous model

e Descent trends are reversed — unusual but a good test

@001 [ 2 Bep 2000 [ MULT-ELEMENT AIRFOI L:VIBCOUE FUNCTION DATA [Famandd [ 20 Eep20dd [MULT-ELEMENTAIRFOIL: NYIECIO FUNCTION DATA

Drag coefficient contours, viscous Drag coefficient contours, inviscid
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Multi-Element Airfoil: AMMO Iterations with 2 Variables

Iteration 1. Starting point: « = 1.0, y-disp = 0.0

High-fidelity objective vs. corrected low-fidelity objective

Frame 0C |H]Eq:|3]l]] | W ULT-ELEWM ENT Al R FOIL: V1 SO0 LS FUNCTION DATA

Froma 001 | 31 Aug 2000 | MU LTI-ELEWME NT AIRFOIL: CORRECTED LO-RA DATA

Drag coefficient contours, viscous

Drag coefficient contours, corrected inviscid
2

175

New point: a« = 2.0, y-disp = —0.01
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Multi-Element Airfoil: Performance Summary

Notation: No. functions / No. Gradients

Test hi-fi eval | lo-fi eval total t factor
PORT with hi-fi analyses, 2 var 14/13 ~ 12 hrs

AMMO, 2 var 3/3 19/9 ~ 2.41hrs | = 5
PORT with hi-fi analyses, 84 var 19/19 ~ 35 hrs

AMMO, 84 var 4/4 23/8 ~ T7.2hrs ~ b
CyMtal=0.0171 at a=1°, flap y-displacement=0

C,fnal =0.0148 at a=1.6305°, flap y-displacement=-0.0048
a decrease of = 13.45%



3D Aerodynamic Design with AMMO

Lo-fi: FUN3D Euler on a coarse mesh

min,,

s.t1.

5CH + 1(Cr — 0.12303)>

zr <z < Ty

0=3.06°, Moo=0.84, Re=5x10°

Lifty = 0.12302, Dragp = 0.01713, Objectiveg = 0.0014670

Test Hi-fi eval | Lo-fi eval | Final Lift | Final Drag f
PORT /u-fi 13/11 0.11148 0.01532 0.0012793
ANMMO 3/3 22/15 0.10857 0.01511 0.0012796

» Factor 2 savings in terms of wall-clock time
* Further savings are expected upon development of optimal termination

criteria for low-fidelity subproblem computations
» Large-scale 3D slot wing design in progress
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Work in Progress

Computational expense is still a difficulty

— Investigating optimal termination of the low-fidelity
computations based of sufficient predicted decrease

— Investigating MASSOUD as a potential robust and efficient
volume grid manipulation tool

— Choice of “optimal” models: least expensive, but with good
predictive properties

Explicit constraint handling in optimization

problems

— Complex derivatives
— Adjoints when variables outnumber responses

Handling mesh adaptation or regenerating
meshes in optimization

Robust handling of analysis and mesh
movement failure

23



Part |I:
MDO Problem Synthesis

and Solution

.

24



Background

MDO formulation

— Statement of the problem as a nonlinear program
(subset of the total design problem)

Optimization algorithm
— Scheme for solving the formulation

Analytical features of MDO problem formulation
strongly influence the practical ability of
optimization algorithms to solve the MDO
problem reliably and efficiently

Can not afford ad hoc techniques with
computationally intensive models

25



Goal

Background

— Provide robust MDO problem formulations and attendant
algorithms to ensure efficient and reliable solution strategies for
the design problem

Work done in some form since MDOB founded

Chronological connection to programs
— Base (FY95-97)
— HPCCP/HSCT (FY97-00)
— ASCoT (FY01)
— 2" Gen RLV/AEE (FY02)

Collaborators:

FY85-present N.M. Alexandrov (MDOB) Analysis and algorithms
FY88-present | R.M. Lewis (ICASE, W & M) | Analysis
FY98 S. Kodiyalam (Engineous, Inc.) | Comparative computational study

of problem formulations

FY01

P.L. Shepherd (W & M student)

Computational interfaces

26



2nd Generation RLV Project
(2001-2002)

« NASA's goals for the second generation RLV are to:
— Improve the expected safety of launch so that by the year 2010 the
probability of losing a crew is no worse than 1 in 10,000 missions.

— Reduce the cost of delivering a pound of payload to low Earth orbit
from today's $10,000 down to $1000 by the year 2010.

« 2nd Gen RLV/AEE Objective
— Deliver to the 2nd Generation RLV Program and ISAT Team “an
advanced engineering synthesis environment complete with life-
cycle simulation models capable of modeling technology,
uncertainty, cost and risk”

Advanced Engineering Environment Systems
(MSFC-led) Engineering

Ig(t)e;gvl\’lztfed Process Asd)\//:tzt;?d Test & Operations &
ificati Maintenance
MDOB leads I Environment D Tools & Methods Verification

I
MDOB supports I
Design Methods' Uncertainties I 12 others




Canonical MDO Problem Synthesis: Fully Integrated
Formulation (FIO)

Problem: design for objective f with

and constraints

(fixed-point procedure)

sensitivities

« Laborious, expensive, one-time
Process

* Difficult to transform or expand

* Need to develop MDA-based
derivatives

« Assumes that MDA is done via
fixed-point iteration

* Expensive to maintain MDA far
from solution

e Little disciplinary autonomy
 Drawbacks of FIO motivate other
formulations

28



HPCCP/HSCT Formulation Study

Alexandrov and Kodiyalam, AIAA-98-4884

¢ Dramatic differences in performance
¢ Formulations in the study: FIO and

Distributed Analysis Optimization (DAO)

System Optimization
minimize objective
s.t. design constraints

interdisciplinary consistency constraints

Analysis ;|

Analysis

Collaborative Optimization (CO)

System Optimization
minimize objective
s.t. interdisciplinary consistency constraints

o~

Subsystem Optimization
minimize inconsistency
s.t. disc. constraints

Subsystem Optimization
minimize inconsistency
s.t. disc. constraints

{ )

I Analysis ; I I Analysis I
Problem 1 2 4 b i T B 0 10
M et hod
M DF 610 220 610 81 J234 | dlr4 K730 1574 | 1353
Co 15626 | 19872 [ 1785 | 2102 | 837 [ 40125 | 691058
112F 9530 BUTH 2 44 932

Example: representative # analyses (MDF = FI1O, IDFLJDAQ)



Evaluating a Formulation

Amenable to solution?

Robust formulation?

— Is the solution set the same as that of the canonical problem?
— Do answers satisfy necessary conditions?
— Is it sensitive to small changes in parameters?

Efficiency of solution?

Autonomy of implementation / ease of

transformation?

— Claim: this is the most labor-intensive part
— Important because no single formulation is good for all problems

Autonomy of execution?

— Wish to follow organizational structure for design
— Wish to optimize wrt local variables only in disciplines

These questions are important in practice
— Direct influence on software and solubility

30



The Two-Discipline Model Problem

8,1y Disciplinary analysis 1

Y

(e.g., Aerodynamics)

8,12 Disciplinary analysis 2

Y

(e.g., Structures)

e Coupled MDA ~- the physical requirement that a solution satisfy both analyses
e Given x = (s,1;,12), we have

] = A1(S,J1,ﬂ.2)
a- = Ag(ﬂ,lz.}.ﬂq)
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Relationship among Optimization Problem Formulations

Write MDA as a4

as

t1
to

A, (39-'!197&2)
AE(Sa'!E&tl)
ai

a2

Start with Simultaneous Analysis and Design (SAND) formulation:

minimize
s,a1,az,ly 2.ty ,12

subject to

fsanp(s;a1,az2)

gi1(s,l1,a1) >0
92(33«325 ﬂz) >0

al = Al(sallati)
ax = AE(E-}EZ-}_‘;I)

t1 =
to =

ai

a2

32



Relationship among Optimization Problem Formulations (cont.)

¢ Eliminate subsets of variables from SAND by closing various subsets of
constraints — get other formulations:

— Distributed Analysis Optimization (DAO): Eliminate a,, a2 as independent
variables by closing the disciplinary analysis constraints at every iteration of
optimization

— Fully Integrated Optimization (FIO): In addition, eliminate ¢, t> as

independent variables by closing {1 = a1 and t2 = a-.

— Optimization by Linear Decomposition (OLD): Eliminate l4, 12, t,, %> as

independent variables via optimization subproblems (MDA remains)

— Collaborative Optimization (CO): Eliminate I1, I> (but not £,, t2) via

optimization subproblems

33



Autonomy / Modularity in Implementation

« Computational elements needed for
optimization (in particular, sensitivities)
can be implemented autonomously by
disciplines

* All formulations require roughly the same
amount of work to implement

« Can reconfigure the same set of
computational components to implement
one formulation of another

34



MDO Problem Synthesis / Implementation
Problem: design for objective f with FUTURE

e l- l-
l'.'.-

(fixed-poin* f)rccedure)

MDA
sensitivities

Laborious. expensive. one-time Expend the effort at the outset to implement analysis and
 €XP ’ sensitivity modules; easy to transform and expand: an

integration, difficult to transform/ opportunity for a general framework
expand 35



Example: Sensitivities in DAO vs FIO

Consider DAO:

minimize fDAO(Satlatz) - f(S; aj (33113323 tﬂ)a 32(53 Ilﬂf’ﬂﬂtl))
S’£1?£2?t1,t2

subjectto go(s,t1,12) > 0
gi1(s,l1,t1) > 0
gz(s8,l2,t3) > 0
3]
i

ﬂ;l(S,ll,Ig,fg)

32(53123123151)3

where, given (s,ly,15,t1,t3),a; and a, are found from

a; — Ay(s,ly,t2) = 0
ﬂ;g—Az(S,f,z,tl) = 0.
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Example: Sensitivities in DAO vs FI1O, cont.

For the objective fpao(s,t1,t2), we need

of of of
Os’ 8t Ot

For the design constraints g, (s,l,,%,) and g, (s,l3,t;) we need

dg1 0g1 9g1 and 0g2 0g2 0g2
ds’ dl,’ dt, 9s’ dly, Oty

For the consistency constraints t; — A; (5, 4, tg) = (0 and

1o — Ag(S,lg,tl) = 0 we need

OA, A, OA, - A, OA, OA,
ds ' 9ly Ot ds  Ol, Oty
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Example: Sensitivities in DAO vs FIO, cont.

Consider FI10:

miliin}ize f(s,ay1(s,1l1,13),az(s,11,13))

subject to  go(s,l1,a1(s,l1,12),a2(s,11,12)) > 0
gl(saf'laﬂl(sallal:ﬂ) 2 0
92(31‘121&2(3311312)) :_> 0,

where a; and a, are computed in MDA

Al(salla ﬂ'ﬂ)

az = A2(53£23 ﬂ'l)

ai

38



Example: Sensitivities in DAO vs FIO, cont.

In FIO approach, we need to compute the sensitivities of the objective

frio(s,li,l2) = f(s,a1(s,l1,12),az2(s,1l1,12)).

By the chain rule,
Ofrio _ ﬁ+ of 0a, n Of Oas
Os Js da1 Os Oaz Os
dfrio _ of 0aa it of Oasz
ol da, Ol da-s Ol
Ofrro _ of 0a,q i Of Oas
ol da, 0Ol, Oa-, 0Ol

We compute the derivatives of a; and a- by implicit differentiation of the
multidisciplinary analysis equations

a; _Al(ﬂallaﬂ'z) -

az — Az(ﬂalza ﬂ1)

39



This yields

9 A, da, 0A,
I " dao Os _ Os
_9A- 7 daz | 0A, |’
da, Js Os
dA; 9a, dA,
I — da ol _ ol
_ JA-2 T dao — ?
3[11 351 0
and 5
0A ai
I - 3[121 Ol2 _ 0
—_ BAE T ﬂag o aAz
da, Ol 2 ol,

to be solved for the sensitivities of a; and a2 wrt (s,11,12). (Referred to as the

““generalized sensitivity equations” by Sobieski, 1990)



Example: Sensitivities in DAO vs FI10O, cont.

Observe that the same elements are needed for FIO and DAO sensitivity
computations

Can implement constituent elements with disciplinary autonomy if do not
integrate MDA via fixed-point iteration early

The elements are integrated differently in FI1O and DAO

Analogous results for CO and OLD

Conclusion: The same computational components are required

41



Algorithmic Interactions

Saw how, in principle, can re-arrange computational components
associated with one formulation and obtain components for another

Re-arrangement may require substantial effort

Now show how for some of the formulations, minor changes in an
optimization algorithm may yield an algorithm for solving another

formulation

Straightforward to pass among some formulations —> facilitate the use of
hybrid approaches: may use one far from solution, another near solution

42



EXHIII]_J]E: DAO vs FIO vs SAND (analysis and coupling constraints only)

Simplified FIO formulation: minimize frro(x) = f(x,a1(x),az(x)),

where, given az, we solve the MDA

Ai(z) \ [ a1 — Ai(z,a1(z),a2(z)) | _ 0
Az () az — Az(z, a1(z),az(z))
Simplified SAND formulation:

minimize fsanp(x,ai1,az2) = f(x,a1,a2)

i,y a3z

subject to  A;(xz,a1,az2) =0
A~2($,ﬂ.1,ﬂ.2) =0

Simplified DAO formulation:

minimize fpao(x,a1,az)
e,al1,az2,l1,l2

subjectto t; — ai1(x,t1,t2) =0
tz — ﬂ.g(m,tl,fz) =0
43



Example: DAO vs FIO vs SAND, cont.

W — basis of the null-space associated with the derivative of the block A;. Relying on
implicit differentiation and the derivations by Lewis, 1997, note the relationship among
the sensitivities for the three methods:

e Suppose, (x, a) is feasible with respect to MDA. Then the (projected) gradients at
(z, @) of FIO and SAND are related by

meFIG(GE) — WgANﬂ (113, ﬂ)vm,afSAND (ﬂfw a.),

where Wgs 4 v p denotes a particular basis for the null-space of VAT in the SAND
approach.

e Suppose that (2, a) is feasible with respect to MDA. Then

WE;AD vm,afDAG(ma ﬂ') — WSTAND (113, ﬂ‘)vm:ﬂfSAND (ﬂj'} ﬂ’)

Can use these relationships to implement a reduced-basis optimization algorithm for the

three formulations with minimal modifications.
44



Sketch of a conceptual algorithm
Consider one step of a reduced-basis algorithm for the SAND formulation:
1. Construct a local model of the Lagrangian about the current design.

2. Take a substep to improve feasibility.
3. Subject to improved feasibility, take a substep to improve optimality.

4. Set the total step to the sum of the substeps, evaluate and update.

e MDA after step 4 —=> a corresponding algorithm for FIO.
e Solving the disciplinary equations as in DAO —> an algorithm for DAO.

e Passing between algorithms for distinct formulations is a straightforward step.

45



Our Currently Favorite Formulation: Expanded DAO

minimize foao(s,t1,t2)
8,00,01:,02,l1,l2,t1,i2
subject to go(@ost1,t2) > 0

gl(ﬂ'lelletl) 2 0
92(529129152) :_:' 0
f21 = ﬂ.1(ﬂ'1.}£1,t2)

t2 = az(o2,1l2,t1)

Op — 8
o1 = 8
O — 8

e Expand variable space to relax the requirement that the disciplinary design
constraints be satisfied with the system-level values of s

¢ Implementation autonomy, no MDA

e Single-level optimization problem - readily soluble

46



Moral of the Story

Problem formulation determines the
practical solubility of the MDO problem

No single formulation or algorithm is
good for all problems

Need to ease implementation of the
formulations and enable easy interchange
among formulations and hybrid
formulations

All formulations need roughly the same
components — identify them

Create disciplinary modules that can be
reconfigured dynamically
47



MDO Problem Synthesis / Implementation
Problem: design for objective f with FUTURE

e l- l-
l'.'.-

(fixed-poin* f)rccedure)

MDA
sensitivities

Laborious. expensive. one-time Expend the effort at the outset to implement analysis and
 €XP ’ sensitivity modules; easy to transform and expand: an

integration, difficult to transform/ opportunity for a general framework
expand 48



Work in Progress

Identification of modular computational components in
the context of several distributed formulations and
attendant algorithms

Evaluation of competing distributed formulations and
optimization strategies

Multiobjective optimization for analysis-based design
Robust multilevel strategies

Current work in the context of Model Center (Phoenix
Integration) and Dakota (Sandia Labs) frameworks

Deliverables to 2"d Gen RLV/AEE:
— Specifications for a modular optimization framework
— Demonstrations

49



Appendix: Comparative Summary of Formulations

FI0O: Single-level optimization, arbitrary coupling, some autonomy of
implementation, MDA required

SAND: Single-level optimization, arbitrary coupling, some autonomy of
implementation, MDA not done, large optimization problem

DAO: Single-level optimization, not for broadly coupled problems, autonomy of
implementation, some autonomy of execution

CO: Bilevel optimization, autonomy of implementation and autonomy of execution
(distributed MDA ), local variables handled in subproblems, no MDA, not for
broadly coupled problems, not robust, can be difficult to solve

OLD: Bilevel optimization, MDA required, autonomy of implementation and some
autonomy of execution, not robust, can be difficult to solve
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