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Robust airfoil optimization to achieve drag reduction over a

range of Mach numbers

W. Li, L. Huyse, and S. Padula

Abstract An airfoil shape optimization method that
reduces drag over a range of free stream Mach num-
bers is sought. We show that one acceptable choice is a
weighted multipoint optimization method using more de-
sign points than there are free-design variables. Alternate
methods that use far fewer design points are explored. A
new method called profile optimization is developed and
analyzed. This method has three main advantages: (a) it
prevents severe degradation at the off-design points by
using a smart descent direction, (b) there is no random
airfoil shape distortion for any iterate it generates, and
(c) it is not sensitive to the number of design points.
For illustration purposes, we use the profile optimiza-
tion method to solve a lift-constrained drag minimization
problem for 2-D airfoil in Euler flow with 20 free-design
variables. A comparison with other airfoil optimization
methods is also included.

Key words robust optimization, airfoil shape opti-
mization, consistent drag reduction, lift-constrained drag
minimization, adaptive weight adjustment

1
Introduction

Optimization of aerospace vehicles or aircraft wings is
based on a mathematical model of the physical reality.
The design variables are parameters in the mathematical
model and changes in these design variables result in new
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physical objects. Aerodynamic optimization is a process
of finding a set of design variables that corresponds to a
new physical object with better aerodynamic and struc-
tural properties.

For airfoil shape optimization, design variables are
parameters that define the airfoil shape. One accepted
practice for modelling airfoil shapes is to use empirical
algebraic expressions that are based on the knowledge of
aerodynamic properties of airfoils. There are two advan-
tages to such an airfoil model.

(a) Each set of design variables (such as maximum thick-
ness, camber, radius of leading edge, etc.) generates
an airfoil with aerodynamic properties that are well
understood by experts.

(b) The number of design variables is small, thus the cor-
responding optimization problem is computationally
affordable.

A drawback to such an airfoil model is that the op-
timization process is merely selecting a desirable airfoil
shape among the predetermined shapes given by the spe-
cific airfoil model. The usefulness of the optimal airfoil
is essentially determined by the usefulness of the airfoil
model.

To achieve truly innovative airfoil designs, it is there-
fore desirable to consider “free-form” shape optimiza-
tion, which allows “truly optimum” designs to be com-
puted (Drela 1998,Section 1). Here “free-form” means
geometric shapes represented by a linear combination of
general basis functions (such as splines or sinusoidal basis
functions). However, there are several challenges associ-
ated with “free-form” airfoil shape optimization. Drela
(1998,Subsection 5.1) pointed out that if presented with
sufficient design model resolution, an optimizer will read-
ily (and annoyingly) manipulate and exploit the flow at
the smallest significant physical scales present that tends
to produce improved performance only near the sampled
operating conditions. The point-optimized airfoil often
shows a possibly severe degradation in the off-design per-
formance and optimized aerodynamic shapes are usually
“noisy” and usually require a posteriori smoothing.

The main objective of this paper is to develop a ro-
bust airfoil optimization scheme for achieving consistent



drag reduction over a given Mach range with only a few
design points. This scheme (called the profile optimiza-
tion method) has the following three main advantages:
(a) it prevents severe degradation in the off-design per-
formance by using a common descent direction for the
drag at all design points in each optimization iteration,
(b) there is no random airfoil shape distortion for any
iterate it generates, and (c¢) it is not sensitive to the num-
ber of design points.

The term “robustness” has been used to mean a vari-
ety of things. For optimization under uncertainty, we can
distinguish the following meanings and goals of “robust
optimization”.

1. Identify designs that minimize the variability of the
performance under uncertain operating conditions.
This is the objective of Taguchi methods (Fowlkes
et al. 1995), which are most practical when the ex-
pected value of the performance can be adjusted at
negligible cost.

2. Mitigate the detrimental effects of the worst-case per-
formance. This is the objective of minimax strategies,
which can be used to find a design with the opti-
mal worst-case performance (Ben-Tal and Nemirovski
1997).

3. Provide the best overall performance of a system by
maximizing the expected value of its utility (Huyse
and Lewis 2001).

4. Achieve consistent improvements of the performance
over a given range of uncertainty parameters. This is
the main objective of this work.

In this paper we use the uncertainty of the flight
speed to show how the profile optimization method can
be used for optimization under uncertainty.

The paper is organized as follows. In Section 2, we
give a brief introduction to the airfoil optimization prob-
lem. Section 3 is devoted to Drela’s hypothesis on the
necessity of using at least O(m) design points for multi-
point airfoil shape optimization, where m is the number
of free-design variables. The main result is a mathemati-
cal argument that provides some insight on why the mul-
tipoint airfoil shape optimization needs at least (m + 1)
design points. We present two airfoil shape optimization
formulations in Section 4 and prove the mathematical
equivalence between these two formulations under finite
sampling in Section 5. The discrete optimization formu-
lations provide accurate approximations of their contin-
uous versions only when a sufficiently large number of
design points are used, which makes them less attrac-
tive as practical robust optimization tools due to high
computational costs associated with a large number of
function/gradient evaluations in each optimization iter-
ation. The profile optimization method is introduced in
Section 6 as a robust optimization tool that works with
only a few design points. Numerical simulation results
are given in Section 7 and final conclusions are drawn in
Section 8.

2
Airfoil shape optimization

Recently, there has been significant progress in airfoil
shape optimization (see Anderson and Bonhaus 1999;
Anderson and Venkatakrishnan 1997; Drela 1998; Nielsen
and Anderson 1998, and references therein). These pa-
pers demonstrate impressive shape optimization using
high-fidelity CFD codes, reliable grid generation, and
numerically efficient sensitivity calculations. Equally im-
pressive progress has been made in optimization of 3-
D wings (Elliott and Peraire 1997, 1998; Reuther et al.
1999; Nielsen and Anderson 2001) and in coupled struc-
tural-aerodynamic optimization (Gumbert et al. 2001).
However, with a few exceptions such as (Drela 1998) and
(Reuther et al. 1999), these aerodynamic shape optimiza-
tion projects all find optimal shapes based on one fixed
operating condition. In this paper, we study a simpli-
fied 2-D airfoil shape optimization problem using a low-
fidelity Euler flow solver, but we include uncertainty in
the operating conditions for the airfoil shape optimiza-
tion.

Airfoil shape optimization is a PDE-constrained op-
timization problem. A general mathematical framework
for multipoint airfoil optimization can be described as
follows (Drela 1998):

T
min > w; Cd(D;ai;Mi) (1)
i=1
subject to
q (D,ai,M,-) >¢ forl1<i<r (2)

and D € F, where w;’s are positive weights, ¢/ is the
minimal lift value, F is a given feasible set for geometric
design variables, M;’s are the Mach numbers, a;’s are
the angles of attack, and ¢4 (or ¢) is the drag (or lift)
coefficient. The feasible set F mainly depends on the air-
foil model. In this paper, we use splines for airfoil shape
modelling: the components of D are the control points
for a spline curve and the feasible set F = R™, where m
is the number of geometric design variables.

Drela (1998) studied the behavior of the optimization
solutions of (1) in two-dimensional viscous flow when
the number of free-design variables is relatively large.
He concluded that increasing the number of geometric
design variables requires a corresponding increase in the
number of design conditions (Mach numbers) used in the
multipoint optimization problem (1). He also suggested
that it is necessary to have r = O(m), where m is the
number of free-design variables, to achieve a smooth air-
foil geometry. Other notable conclusions made by Drela
(1998) are as follows.

— Near-continuous sampling of the operating space (i.e.,
in the range of Mach numbers) may be required in the



theoretical limit of a general airfoil design problem
with a very large number of degree of freedom (for
geometric variables) — a very expensive proposition.

— The most suitable operating points to be actually
sampled in multipoint airfoil optimization (i.e., My,
Ms, ... ,M,) are not apparent a priori. From limited
experience, sampling somewhat beyond the expected
operating range appears to be best.

— The point weights (i.e., wi, w2, ... ,w,) used in mul-
tipoint airfoil optimization are arbitrary, and their
appropriate values can not be easily estimated with-
out prior experience.

— Optimized aerodynamic shapes are usually “noisy”
and require a posteriori smoothing.

3
The critical number of design points for multipoint
airfoil optimization

In this section, we try to validate Drela’s hypothesis
on the necessity of having the number of design points
proportional to the number of design variables. Specifi-
cally, we give a mathematical argument to explain why
the number of design points must be greater than the
number of free-design variables in order to avoid point-
optimization at the design points. By point-optimization,
we mean that drag is minimized at the r design points
but rises unexpectedly at some of the off-design points.

In (1), the angle of attack, «;, is predominantly de-
termined by the constraint on the lift coefficient at M;.
Therefore, it is theoretically possible to eliminate the
constraint and consider the following unconstrained re-
formulation of (1):

min 3" wif(D, My, ®
i=1

where f is a function related to the drag coefficient.
Let D be an optimal solution of (3). Then

S wi oL, =0, @)
i=1

where 6%’% denotes the gradient of f with respect to D.
If r < m, then (r — 1) < m. So we can find a nonzero
vector AD in the orthogonal complement of the subspace
of R™ generated by the following (r — 1) vectors:
of /= of
— (D, Ms),...,=—=—(D, M,).
BD( ’ 2)7 70D( ) 7‘)
By (4) and w1 > 0, AD must also be orthogonal to
g—};(D, M;). Therefore, we obtain a nonzero vector AD
such that

<g—lJ;(f),Mi),AD>:0 for1<i<r, (5)

where (u,v) denotes the dot product of vectors u and v.
Let M,4+1 be any Mach number such that

of  »
<6—D(D,Mr+1), AD> # 0. (6)
Let {1, ... ,wWr+1} be aset of arbitrary positive weights.

By Taylor expansion, we get

r+1 R r+1 R
D if(D+tAD, M) =Y i f (D, M)+
i=1 i=1
r+1 Bf
A. —_— ) . 2
tgw,<aD(D,Ml),AD>+C’)(t ). (7)

It follows from (7) and (5) that

r+1 r4+1
> i f(D +tAD, M;) = wif (D, M)+
=1

i=1

41 <§—1J;(f),MT+1),AD> +0(t?). (8)

By (6), we can choose t such that |¢| is sufficiently small
and

oD
Then (8) implies

t<ﬁ(f),MT+1),AD> <0.

r+1 r+1
> i f (D +tAD, M;) < Y i f(D, M;).
=1 =1

That is, after adding one more design point, D is not an
optimal solution no matter how the weights are selected.

The above argument shows that if the number of de-
sign points is less than one plus the number of free-design
variables, then a large improvement at a new design point
can be accomplished with only a small deterioration in
the performance at the old design points. This means
that it is attractive to use more design points for the
multipoint optimization method.

We can also use the above argument to explain why
point-optimization is likely to occur if the number of de-
sign points is no more than the number of free-design
variables. For example, suppose that (D +tAD) given in
the above argument is the current design vector. Then
the multipoint optimization method finds the optimal
solution D by reducing the drag at the design points
My, ..., M, marginally, while unintentionally increasing
the drag at off-design points (such as M,.1) significantly.
In other words, if the number of design points is no more
than the number of free-design variables, then it is pos-
sible to have a first-order increase of the value of f at
some off-design Mach number M, ;; (in order of |¢|) and
only second-order reduction of the values of f at M;’s
(1 < i <) (in order of #?). This could result in an op-
timal airfoil with point-optimization behavior: low drag
at the design points, but severe degradation of the per-
formance at off-design points.



4
Robust airfoil optimization formulations

For engineering design problems, an optimal design is
usually obtained under some explicit/implicit assump-
tions. This leads to a design that works well under ideal
operating conditions but may perform inadequately un-
der non-ideal (i.e., off-design) conditions. The problem is
that the optimal design does not consider the uncertainty
or variability of some parameters/data that will affect
the actual performance of the design in a real-world sit-
uation. Therefore, it is necessary to include uncertainties
in a practical design optimization process. In this paper,
we assume that M is the only uncertain parameter and
[Mmin, Mmax] is the range of Mach numbers considered.
Let p(M) be the probability density function of the
uncertain parameter M. Then a stochastic programming
formulation for airfoil optimization under uncertainty
can be described as follows (Huyse and Lewis 2001):

Mmax

min, ) / ca(D, M, a(M)) p(M) dM (9)

subject to

a(D,M,a(M)) > ¢ for Mmin < M < Mmax (10)
and D € F, where F is the feasible geometric design
space and ¢} is the minimal lift value. This corresponds
to the third definition of “robust optimization” given in
the introduction.

On the other hand, one can also use the following
minimax optimization formulation for robust optimiza-
tion under uncertainty (Ben-Tal and Nemirovski 1997):
p(M) ca(D, M, a(M)) (11)

min max
D,a(-) Mumin <M< Moo

subject to the constraints given in (10). Here p(M) > 0
is a positive weighting function of M. This corresponds
to the second definition of “robust optimization” given
in the introduction.

The constraints on the lift can be eliminated by choos-
ing an appropriate value for the angle of attack corre-
sponding to each M. In fact, Elliott and Peraire (1997)
suggested to incorporate a means for adjusting the an-
gle of attack to satisfy the lift constraint into the flow
analysis algorithm. One problem with this elimination
approach is that the angle of attack becomes a function
of M and D, and the derivatives of a with respect to
D have to be computed in order to get the derivatives
of ¢ and ¢4 with respect to D. In this study, we re-
tain the lift constraint to make our methods applicable
to general constrained aerodynamic optimization prob-
lems (with constraints on the pitching moment and the
leading edge radius, etc.).

5
Approximations to robust optimization formulations

Since we cannot compute ¢; and ¢4 for all M in the Mach
range [Mmin, Mmax], computationally tractable approxi-
mations of (9) and (11) must be used. The simplest ap-
proximation scheme is to replace [Mmin, Mmax by a finite
subset of [Mmin, Mmax], say {M1, Ma, ..., M,}. Then (9)
is reduced to the multipoint optimization problem (1)
(Drela 1998), but the weights w; depend on the prob-
ability density function p(M) and a chosen integration
scheme. Similarly, the minimax formulation (11) can be
discretized as follows:

i D M, 12
pnin - max pica(D, e, M), (12)

subject to the constraints given in (2). Here p; > 0 is
determined by p(M) and M;.

It seems that (1) and (12) are completely different.
However, under the strict complementarity condition (i.e.,
Lagrange multipliers are nonzero for all active constraints),
(1) is mathematically equivalent to (12). Here we give a
proof of the mathematical equivalence between (1) and
(12).

Let (ﬁ,dl, ...,@,) be a stationary solution of (1).
For simplicity, assume that D is in the interior of F
and the equality holds for lift constraints. Then, under
the strict complementarity condition, the following first-
order optimality condition (or the KKT-condition) for
(1) holds:

r

Z"Uzacd D az; Z/\ dc D az; z)_O;
wzg:j (D,&Z,Mz) = )\ g;l (D Otz, z) for 1 S ) S r,

A >0, cl(ﬁ,di,Mi) =¢ for1<i<r. (13)

Define

’3’ = z wicd(ﬁ, éli, Mz) ;

i=1

pi = >0 for1<i<r,

Q> 2>

ca(D, &, M;)

w;
— for1<i<r.

Pi

0,’2

Then (13) implies the following conditions:

r

Zezp,acd D, Gi, M. ZA 0% (B, és, Mi) =0,

6cd

0,p,6 (D, &;, M;) = \j— O

D
"Oa; B (Do i

M) for1<i<r,



Xi>0, (D, éi, M) =¢f forl1<i<r,

pica(D, 6, M;) =4 for1<i<r,

,
0; >0 for1<i<r and » 6;=1. (14)
i=1

By (14), (3, D, 4y, ... ,&,) satisfies the KKT-condition
of the following optimization problem:

min vy  subject to ¢(D,a;, M;) > ¢

Do,y

and

ca(D,as, M) < L for1<i<r. (15)
pi

Since (15) is mathematically equivalent to (12), (D, éx,
., @) is also a stationary point of (12).
On the other hand, assume that (D, d;,...,&,) is a
stationary point of (12), the equality holds in (2), and
pica(D, b, M;) =4 for 1 <4 <r, where

5 := max p; cq(D,&;, M;).
fy ISiSsz d( ) (3 Z)

Then (§,D,é4,... ,&) is a stationary solution of (15). If
we further assume that the strict complementarity con-
dition holds, then the KKT-condition (14) for (15) holds.
It follows from (14) that (13) holds for w; = p;6;. There-
fore, (D,éy, ... ,d,) is also a stationary point of (1).

Remark 1 Note that the strict complementarity condi-
tion holds naturally for (1). In fact, if the lift is greater
than its target value, then one can reduce the angle
of attack so that the lift with respect to the new an-
gle of attack is equal to the target value, but the drag
with respect to the new angle of attack is reduced. This
is not possible at a stationary point. Therefore, all lift
constraints at a stationary point become equality con-
straints. Also, the derivative of the drag with respect to
the angle of attack is positive for the range of the an-
gle of attack considered herein, which implies that the
Lagrange multipliers \; are positive (cf. (13) or (14)).
Thus, the strict complementarity condition for (1) always
holds. An implication is that it is possible to recover an
optimal solution of (1) by solving (12) with appropriate
choices of p;’s.

However, it is a little more difficult to claim that a
stationary point of (12) is also a stationary point of (1).
In the proof given above, we used two additional assump-
tions: (a) all p;cq(D, &;, M;) have the same value 4, and
(b) the strict complementarity condition holds for the
drag constraints in (15). The first assumption is not re-
alistic in the sense that we do not know how to choose p;’s
to make picd(f), &, M;) have the same value for an opti-
mal solution. Adaptive adjustments of p;’s are used in the

profile optimization method to ensure all p;cq4(D, o, M;)
(1 <4 < r) have the same value during the optimization
iterations. The assumption (b) is a natural one, since the
strict complementarity condition for the drag constraints
means that every drag constraint is necessary for getting
the optimal solution.

The results in (Drela 1998) indicate that the multi-
point airfoil optimization formulation (1) tends to pro-
duce airfoils that have possibly severe degradation in the
off-design performance, which Drela referred to as point-
optimization behavior. The above equivalence analysis
also implies that the same conclusion holds for the min-
imax formulation (12).

Huyse and Lewis (2001) concluded that the point-
optimization behavior can be attributed to the discretiza-
tion error between (9) and (1). The multipoint formula-
tion (1) approximates the integral as a discrete sum: low
drag is obtained at the selected Mach numbers My, ...,
M., but there is no control over, nor requirements for,
the drag at the other Mach numbers. Due to the highly
nonlinear nature of the PDEs for flow simulation, the
optimizer is able to mold the objective function ¢4 to
its own advantage: distinct drag troughs appear at each
of the Mach numbers M, ..., M, (see also Drela 1998).
To prevent the optimization algorithm from exploiting
the approximation error, Huyse and Lewis (2001) sug-
gest changing the integration points Mj,... , M, during
each optimization step. This effectively ensures that low
drag is obtained not for just r fixed Mach numbers, but
for any combination of » Mach numbers My, ..., M,. In
their study, they added a random perturbation to the
integration points in each optimization step but stated
that “any adaptive scheme that varies the location of
the integration points M}, for each optimization step will
do.”

In the following two sections, we propose an alter-
nate method called profile optimization and compare it
with other airfoil optimization methods. We will show
that with only far fewer design points than the number
of free-design variables, the profile optimization method
can adaptively adjust p;’s in (12) to achieve a consistent
drag reduction over the given Mach range, so there will
be no degradation in the off-design performance of an
optimal airfoil. We will also point out advantages and
disadvantages of the profile optimization method when
compared with other airfoil optimization methods.

6

Profile optimization method

In this section, we first give a motivation for a new shape
optimization strategy based on the robust optimization
model (12) and then present the profile optimization
method.

Let D be a fixed feasible design vector. We can plot
the drag with respect to the Mach numbers over the in-
terval [Mmin, Mmax] while keeping the lift at a constant



value by adjusting the angles of attack for different Mach
numbers. Such a plot will be called a profile for D (see
Fig. 3(a) for example). Ideally, we want to obtain a de-
sign vector D with a desirable profile (for example, with
the drag rise occurring at a very high Mach number).
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Fig. 1 The initial grid used for solving the Euler equation
by FUN2D

Suppose that a “perfect” design vector D could be
obtained by some magic process, which might be either
theoretical or experimental. Let us look at the unknown
process from a reverse engineering point of view. That is,
even though we have no idea about how the airfoil was
designed, we want to construct an optimization scheme
that produces an airfoil with a similar or better profile.

Assume that the profile curve is generated by com-
puting the drag coefficients at Mach numbers M;, Ms,
..., M,. Let 1/p; be the value of the drag coefficient of
the “perfect” airfoil at Mach number M; with angle of
attack @;, which is chosen so that the lift coefficient is
equal to ¢;. Then the global optimal value of (12) is no
more than 1. If (D, &, ... ,&,) is a global optimal solu-
tion of (12), then

N 1 _
cd(DJ A, Mt) <—= Cd(D7 A, Ml)

pi

for1<i<r.

Therefore, with the given analysis (i.e., using the profile
of the drag coefficient at Mj,... , M,), D is no worse
than the “perfect” design vector D.

This shows that for any given profile analysis method,
it is possible to recover or improve a desirable airfoil by
solving (12), if the weights are appropriately chosen. In
this sense, (12) provides a very flexible tool for airfoil
optimization. By experimenting with various choices of
the weights p;, a robust airfoil may be obtained (if such
an airfoil exists). However, instead of guessing the ap-
propriate weights in (12), we can adaptively adjust the
weights during the optimization iterations. This leads to
the profile optimization method.

Before presenting the profile optimization method, we
give a linear programming formulation of a trust-region
method for solving (12). Using linearization of the non-
linear functions in the mathematically equivalent formu-
lation (15) at the current iteration point (DF, ay 4, ... ,
arr), we get the following trust-region subproblem for
(15):
subject to (16)

min
AD,Aa;,y v

—0;6 < AD; <0;6 for1<i<m,

—oj < Ao < Qmax — a4 for 1 <i <,

dc
(D0 M)+ ( GEE(D¥, i, M), AD ) +
661 k * .
%(D s ik, Mi)Aa > ¢ for 1 <i<r,

6cd

a—D(Dk,ai,k,Mi),AD> +

ca(D¥, a; gk, M) + <

%(D’“,ai,k,Mi)Aai <X fori<i<r,
Oa pi

where AD and Aq; are the increments for D and «;,
respectively, o; and & are positive constants that define
the trust region for AD, and apax is the maximum angle
of attack allowed.

Algorithm 1 (Profile Optimization Method) Sup-
pose that D° is a given design vector and My, M, ...,
M, are the design points. Let 0 < n < 1 be the predicted
percentage reduction rate of the drag for the trust-region
method and let 0 < € < 1 be a parameter for termination
of the algorithm. Then construct a new design vector as
follows.

(1.0) Initialize the angles of attack: Find a0, a20,
<y apg such that (D, a0, M;) = ¢f for1 <i <r;
and let k = 0.

(1.1) Adjust weights: Let

1
= ———— for1<i<r.

pi ca(DF, aik, M;) o sreT

(1.2) Check early termination: If the zero vector is
an optimal solution of (16), then output D* as an
optimal solution and terminate the algorithm.

(1.3) Find a trust region for the predicted per-
centage reduction of the drag: Find § > 0 such
that the optimal objective function value of (16) is
(L—n).

(1.4) Solve the trust-region subproblem: Find the
least norm solution (AD*, Aoy i, . .. , Aay.r) of (16).



(1.5) Generate the new iterate: Let o p+1 = i +
Aa;j for 1 <i<r, and D¥! = D* + AD*.
(1.6) Check heuristic termination conditions: If

max  p; cq(D**, i pq1, M) > 1 and (17)
1<i<lr
T
€ < EZ cd(Dk,a,-,k,Mi), (18)
i=1

where €y, is the accumulative reduction of the drag at
the design points defined by

T

€r = Z (Cd(Dkaai,kaMi) - Cd(DkHaai,kHaMi))v
=1

then output D* as an optimal solution and terminate
the algorithm.

(1.7) Start a new iteration: Update k := k + 1 and
go back to (1.1).

Remark 2 The adaptive adjustment of weights makes it
possible to achieve a consistent drag reduction over the
Mach range [Mmin, Mmax]- Note that moving along the
descent direction ADF gives a simultaneous drag reduc-
tion at all design points My,... , M, (at least if a small
step is used). If the selected design points are a “fair rep-
resentation” of all Mach numbers in [Mpyin, Mmax], then
moving along AD* will not induce any hidden rise of the
drag at some unselected Mach number. This leads to a
robust optimization method that achieves a consistent
drag reduction over the given Mach range from iteration
to iteration (see the profiles of the drag coefficient for
iterates generated by the profile optimization method in
Fig. 4(a)).

In contrast, without adaptive weight adjustments, it
is necessary to use more design points than the number
of free-design variables with the multipoint optimization
method in order to avoid point-optimization at selected
design points (cf. Sections 3 and 5).

Besides the adaptive adjustment of weights, there are
three features of the profile optimization method that are
not standard for a trust-region method.

(a) First, the size of the trust region is modified to
achieve a given predicted percentage reduction rate n of
the drag. This approach is employed to avoid the follow-
ing two problems, which are incurred in practical appli-
cations of a standard trust-region method: (i) an appro-
priate size of the trust region is unknown without prior
experiences, and (ii) if each iteration takes a long time
to complete, then rejecting a new iterate might be hard
to accept by a designer.

For airfoil shape optimization, if the percentage re-
duction of ¢4 is too small, then the reduction could be
a consequence of numerical errors and is less reliable. If
the predicted percentage reduction of ¢4 is too large, then
the size of the trust region is also relatively large and the

predicted reduction can not be trusted. By choosing an
appropriate percentage reduction rate for each iteration,
these two problems might be avoided.

Note that the choice of the predicted percentage re-
duction rate depends on a user’s knowledge of the ac-
curacy of the simulation analysis tool involved, the time
allowed to generate a new design, and the expected over-
all performance improvement. For example, if the rela-
tive numerical error for computing cq4 is 0.5%, each iter-
ation takes 3 hours, a designer has 1 day to generate a
new design, and the expected improvement is 8%, then
the designer could set n = 1% so that each iteration will
produce some meaningful improvement of the design and
the final design might have about 8% improvement over
the original design after 1 day (or 8 iterations).

(b) The second non-standard feature is that we use
the least norm solution of the linear programming prob-
lem (16), which can be obtained by solving a quadratic
perturbation of (16) (Mangasarian 1984). Our implicit
assumption here is that the original airfoil is reasonable.
Therefore, we do not want a new airfoil to deviate too
much from the original one if unnecessary. By using the
least norm solution of (16), we intend to select a new
airfoil closest to the original one while achieving a pre-
determined amount of improvement in performance.

(c¢) The third non-standard feature of the profile op-
timization method is the termination criterion, which is
based on design heuristics. The drag of the new design
updated by the solution to the linearized problem (16) is
reevaluated by using the CFD code. If a good descent
direction for drag reduction at all design points does
not produce actual drag reduction at every design point
(i.e., (17) holds) and the overall percentage reduction is
insignificant (i.e., (18) holds), then there is no need to
continue the optimization process.

Finally, we point out that the requirement of im-
provement at every design point during each optimiza-
tion iteration makes the profile optimization method more
likely to get trapped at a local solution than the multi-
point optimization method, which only requires an im-
provement of the weighted average of the drag at all
design points. There are two possible remedies for this
weakness of the profile optimization method: (a) use mul-
tiple starting points to search for an truly optimal so-
lution (which increases its computational costs) or (b)
when getting trapped, run a few iterations of a more ag-
gressive optimization method such as the multipoint op-
timization method to get a new design vector and then
restart the profile optimization from the new design vec-
tor.
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Fig. 2 The Mach waves (for the Mach number 0.796) around the NACA-0012 and an optimal airfoil generated by the profile

optimization method

7
Numerical simulation results

For the current implementation of the profile optimiza-
tion method, search methods based on linear interpola-
tion are used to find initial values of the angles of attack
for r Mach numbers and the size n for the trust region
in each iteration. The function values and gradients of
¢; and c¢g are computed in parallel for » Mach numbers.
See Li et al. (2001) for implementation details.

We use the NACA-0012 airfoil as the initial point for
all optimization methods discussed in this section. This
choice allows us to compare new results with previously
published results; however, this choice may violate the
assumption that the original airfoil is reasonable, which
is the basis for one optimization strategy behind the pro-
file optimization method: a minimal shape modification
should be made to achieve the required drag reduction
at the design points.

A periodic spline representation of the NACA-0012
with 23 control points is used to get an initial parametric
model of the airfoil:

22 22
=Y aipi(t), y=)» bigit), for0<t<1,
=0 =0

where p; and ¢; are spline basis functions. The shape
of the airfoil can be modified by changing the values of
the b;’s. The tip and the tail of the airfoil are fixed dur-
ing the optimization (i.e., by, b11, and bss are fixed) so
that the chord length remains constant and the trailing
edge comes to a sharp point. As a consequence, we have
20 free-design variables (by,...,b1g,b12,--- ,b21) in the
airfoil shape optimization.

The CFD code FUN2D is used to compute the func-
tion values and gradients of the lift and drag (Nielsen
2002). Some technical details of the flow solver (for func-
tion evaluations) and the adjoint equation solver (for gra-

dient evaluations) in FUN2D can be found in (Anderson
and Bonhaus 1994) and (Nielsen and Anderson 1998),
respectively.

We use Euler flow to demonstrate the usefulness of
the profile optimization method as a robust airfoil op-
timization tool. The main reason to choose Fuler flow
simulation analysis is that we can complete our prelimi-
nary evaluation of the profile optimization method in a
reasonable amount of time.

Elliott and Peraire (1997,Section 1) stated that al-
most any drag minimization exercise based on the Euler
equations and applied to modern supercritical wings in
cruise condition is doomed to failure. However, they also
concluded that Euler-based optimization can be useful
as a first step in the design process (Elliott and Peraire
1998, Abstract).

The initial grid for FUN2D used in this paper has
124 points around the airfoil and 32 points at the far
field (at a distance of 50 chord lengths). The grid has
3060 nodes, 9025 faces, and 6120 elements. Fig. 1 shows
the initial grid around the NACA-0012. See Huyse (2001)
for a comparison of the numerical approximations of the
lift and drag using this grid and other grids.

We compute the least norm solution of (16) by the
quadratic programming solver QLD, which was first de-
veloped by Powell (1983) and then modified by Schit-
tkowski (1986).

Our numerical simulations are designed to examine
the impact of the number of design points and the tar-
get lift value on the profile optimization method. Also,
we shall compare the simulation results obtained by the
profile optimization method with the multipoint opti-
mization method and the expected value optimization
method. Therefore, we consider the following cases for
numerical simulation:

1. the profile optimization with 4 design points equally
spaced in the Mach range [0.7,0.8], ¢; = 0.4, a fixed
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Fig. 3 The two figures illustrate the behaviors of the iterates generated by the profile optimization method, with ¢ = 0.2 and
4 equally spaced design points. (a) Profiles of the drag coefficient versus the Mach number for the iterates and (b) the shapes
of airfoils corresponding to the iterates. (Note: the airfoils are shifted to improve the visibility)

percentage reduction rate n = 5%, and a termination
parameter € = 0.3%;

2. the profile optimization with 3 design points equally
spaced in the Mach range [0.7,0.8], ¢ = 0.4, a fixed
percentage reduction rate n = 5%, and a termination
parameter € = 0.3%;

3. the profile optimization with 8 design points equally
spaced in the Mach range [0.7,0.8], ¢f = 0.4, a fixed
percentage reduction rate n = 5%, and a termination
parameter € = 0.3%;

4. the profile optimization with 4 design points equally
spaced in the Mach range [0.7,0.8], ¢; = 0.2, a fixed
percentage reduction rate n = 5%, and a termination
parameter € = 0.3%;

5. the multipoint airfoil optimization with 21 design points

equally spaced in the Mach range [0.7,0.8], w; =
wor = 1/40, wy = -+ = wyo = 1/20, and ¢ = 0.4;

6. the multipoint airfoil optimization with 4 design points
equally spaced in the Mach range [0.7,0.8], w; =
wy =1/6, wy =ws =1/3, and ¢f =0.4;

7. the expected value airfoil optimization with adaptive
changes of w; corresponding to 4 randomized integra-
tion points, and ¢; = 0.4.

The first case is the benchmark case. The next two
cases are included to examine the impact of the num-
ber of design points on the profile optimization. We use
Case 4 to examine the impact of the target lift value on
the profile optimization. Case 5 is included to validate
the claim that a smooth airfoil with no off-design perfor-
mance degradation could be found if the number of de-
sign points is greater than the number of free-design vari-
ables. The last two cases are for comparison of the profile
optimization with other optimization methods. The pro-
files of the drag coefficient for a given ¢} are plotted by
using 24 equally spaced Mach numbers in [0.7,0.8].

7.1
Impact of the number of design points

The profile optimization method terminates after 69, 67,
and 57 iterations for 3, 4, and 8 design points, respec-
tively. The number of design points has no significant
impact on the optimal airfoils generated by the profile
optimization method. All optimal airfoils have similar
shapes (cf. Table 1) and only a marginal drag reduc-
tion is achieved by adding more iterations (cf. Table 2).
By contrast, the number of design points makes a sig-
nificant difference in the multipoint optimization results
(cf. Fig. 5(a) and (Drela 1998; Huyse 2001)).

Each number in Table 1 denotes the relative differ-
ence of two design vectors: ||D, — D.||/||D-||, where D,.
(or D.) is either the NACA-0012 or the optimal design
vector obtained by the profile optimization method with
the number of design points listed in the corresponding
row (or column).

Table 1 The relative differences (in percent) of the design
vectors

NACA-0012 3 Pts 4 Pts 8Pts
NACA-0012 - 24.5 25.7 23.8
3 Pts 24.7 — 1.7 1.2
4 Pts 25.9 1.8 — 2.6
8 Pts 23.9 1.2 2.6 —

A typical optimal airfoil is given in Fig. 2(b). This
Mach wave plot illustrates how one strong shock wave
for the NACA-0012 is reduced to several weaker shock
waves for the optimal airfoil.

With four design points, the profile optimization method

achieves consistent drag reduction over the Mach range
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Fig. 4 The behaviors of iterates generated by various optimization methods with ¢; = 0.4 and four design points

[0.7,0.8] (cf. Fig. 3(a) and 4(a)). There is no random dis-
tortion of airfoil shapes during the optimization process
(cf. Fig. 3(b) and 4(b)).

It is worth pointing out that the iterates generated
by the profile optimization method are also independent
of the number of design points. For example, the 56-th
iterate generated by the profile optimization method for
4 design points differs from the 56-th iterate correspond-

ing to 3 (or 8) design points by 0.35% (or 1.2%). The
profiles of the drag coefficient for optimal airfoils gen-
erated by the profile optimization with 3 and 4 design
points, respectively, are almost identical. The profile of
the drag coefficient for the optimal airfoil corresponding
to 8 design points is very similar to the drag profile of
the 57-th iterate generated by the profile optimization
with 4 design points.
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7.2
Impact of the target lift value

The target lift value ¢; has a quite significant impact on
the optimal airfoil generated by the profile optimization
method.

During each profile optimization iteration, we use a
descent direction for the drag at all the design points,
which guarantees the reduction of the drag at every de-
sign point if a sufficiently small trust region size § is used.
However, it does not guarantee the actual reduction of
the drag at every design point if the stepsize is chosen to
satisfy the required rate of reduction of the linear approx-
imation of the drag at the current iterate (cf. (1.3) of
Algorithm 1). With ¢ = 0.2, the NACA-0012 is almost
optimal for low Mach numbers, which results in some
minor increase of the drag around M = 0.73 for the iter-
ates generated by the profile optimization method. How-
ever, the profile optimization method manages to keep
the drag as low as possible for Mach numbers between
0.7 and 0.75, while reducing the drag significantly for
Mach numbers between 0.75 and 0.8 (cf. Fig. 3(a)).

Note that the drag bucket (i.e., a drop of the drag
before its dramatic rise) occurs near M = 0.73 for the
NACA-0012 and the drag bucket for the optimal airfoil
occurs near M = 0.78. Such a delay of the drag rise is de-
sirable. The only compromise made by the optimal airfoil
to the NACA-0012 is a small increase of the drag around
the original drag bucket for the NACA-0012, which is
quite reasonable.

For the higher target lift ¢; = 0.4, the optimal air-
foil shape (shown in Fig. 4(b)) deviates more from the
NACA-0012. Also, the 33rd iterate generated by the pro-
file optimization method for ¢; = 0.4 differs from the
33rd iterate for ¢; = 0.2 by 10%.

Note that the shape variations of the airfoils corre-
sponding to iterates generated by the profile optimiza-
tion method follow a similar trend no matter what the

target lift is: the aft end thickens while the front section
narrows. This pushes the shock location towards the aft
region of the airfoil.

A similar airfoil with thin front and fat tail was ob-
tained by Elliott and Peraire (1997,Fig. 34) in a to-
tally different context, where they used two thickness
design variables and one camber design variable for a lift-
constrained drag optimization with 2-D separated vis-
cous flow and an additional area constraint. The initial
airfoil used by them is also the NACA-0012. Their ex-
planation of the merit of an airfoil with thinner front
and fatter tail over the NACA-0012 is that the thick-
ness distribution has been redistributed such that the
maximum is further aft (i.e., closer to the tail), like the
early natural laminar flow airfoils, this delays the start
of the adverse pressure gradient to aft of that maximum
thickness point.

7.3
Impact of the optimization strategy

From the analysis given in Sections 3 and 5, we know
that if the design points and weights are fixed as in either
(1) or (12), then a severe degradation in the off-design
performance is likely when the number of design points
(i.e., 4) is much smaller than the number of free-design
variables (i.e., 20). Figure 5(a) clearly reveals the point-
optimization features of the optimal airfoil generated by
the multipoint optimization method with 4 design points.
Figure 4(c) suggests that the point-optimization behav-
ior becomes more pronounced as the iteration number
increases. This is consistent with our mathematical ar-
gument and the explanation given in Section 2: the mul-
tipoint optimization method is likely to trade marginal
performance improvements at the design points for sig-
nificant performance degradation at off-design points.
However, such off-design performance degradation does
not occur if the number of design points is larger than the
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number of free-design variables, as shown in the drag pro-
file of the optimal airfoil generated by the multipoint op-
timization method with 21 design points (cf. Fig. 5(a)).
However, a total of 21 Euler flow problems (for getting
the lift and drag at 21 Mach numbers) and 42 related
nonlinear adjoint equations (for getting the gradients of
the lift and drag at 21 Mach numbers) have to be solved
in each iteration of the multipoint optimization method,
which might not be practical if it takes days and many
processors to solve one flow/adjoint problem for high fi-
delity aerodynamic optimization problems such as 3-D
wing optimization (Nielsen and Anderson 2001).

The expected value optimization method (Huyse and
Lewis 2001) adds a random perturbation to the integra-
tion points from iteration to iteration and adjusts the
weights accordingly so that a severe degradation in the
off-design performance can be avoided. Fig. 4(e) shows
that this technique allows the optimizer to reduce the
drag while avoiding point-optimization.

The profile optimization avoids the problem of point-
optimization at the design points (cf. Fig. 3(a) and 4(a))
by using a smart descent direction to achieve consistent
drag reduction over the whole Mach range.

Table 2 gives an overall sense of how each optimiza-
tion method reduces the drag coefficient with ¢; = 0.4.
Let My, Ms,,..., M>;s be 24 equally spaced points in
[0.7,0.8]. For each M;, let cq; (or éq,;) be the drag coeffi-
cient of the NACA-0012 (or an optimal airfoil) with the
lift coefficient fixed at 0.4. Then the relative reduction
of the drag at each Mach number M; is (cq,; — €q,:)/Ca,i-
The numbers in “Max”, “Min”, and “Average” columns
of Table 2 correspond to

Cd,i — Cd,i

. Cd,i — Cd,i
max ———, mm ———
1<i<24 Cd,i 1<i<24 Cd,i

24 24 24
(Z Cdyi — Z éd,i> / (Z cd,i> , respectively.
i=1 i=1 i=1

, and

Table 2 Relative drag reduction rates (in percent)

Max Min Average
Profile Opt. (3 Pts) 829 5.1 702
Profile Opt. (4 Pts) 827 14 697
Profile Opt. (8 Pts) 826 41 679
Multipoint Opt. (4 Pts) 89.4 46.2 81.1
Multipoint Opt. (21 Pts) 90.0 47.7 833

Expected Value Opt. (4 Pts) 89.4 49.6 82.6

Note also that the multipoint optimization method
and the expected value optimization method resulted in
an optimal airfoil with a drag curve that is consistently
lower over the Mach range than the profile optimiza-
tion method (cf. Fig. 5(b)). It seems that it should be
possible for the profile optimization method to find a de-
scent direction for a consistent drag reduction over the

whole Mach range [0.7,0.8], by moving toward the op-
timal solution given by either the multipoint optimiza-
tion method or the expected value optimization method.
However, due to nonlinearity of the drag coefficient (with
respect to the design variables), the profile optimization
method can not find such a descent direction by using
the local derivative information only.

8

Conclusion

In this paper, we introduce a new robust optimization
scheme called the profile optimization method and use
airfoil optimization under uncertain flight conditions as
a case study to evaluate this method. We used an Euler-
based CFD code, which does not include viscous effects,
to test the profile optimization method. Because of this
lack of fidelity, the generated airfoils may be somewhat
unrealistic.

For the multipoint optimization method, we give a
mathematical argument that provides some insight on
why it is necessary to use more design points than the
number of free-design variables with the multipoint op-
timization method in order to avoid point-optimization
at selected design points.

However, with only a few design points, the profile
optimization method adaptively adjusts the weights in a
minimax optimization formulation to find a drag reduc-
tion direction for all design conditions, which leads to
a consistent drag reduction over a given range of Mach
numbers from iteration to iteration.

Our numerical results demonstrate that the profile
optimization method is not sensitive to the number of se-
lected design points. With 20 free geometric design vari-
ables and as little as 4 design points, the optimal airfoil
generated by the profile optimization method is smooth
and has no degradation in the off-design performance.

The profile optimization method can be easily mod-
ified to solve other optimization problems under uncer-
tainty by replacing ¢4 with another performance mea-
surement function and M with other uncertain parame-
ters.

The profile optimization method also has the poten-
tial of becoming a practical design tool for optimization
under uncertainty. The use of a small number of sam-
pled design points from the range of uncertain param-
eters makes the profile optimization method computa-
tionally affordable. The consistent performance improve-
ments over the range of uncertain parameters from iter-
ation to iteration allows a designer to stop the iterative
process at any time with an improved new design.

However, by requiring drag reduction at every design
point during each optimization iteration, the profile op-
timization method is more likely to get trapped in a local
solution than the multipoint optimization method, which
only requires an improvement of the weighted average of
the drag at all design points. One might use multiple



starting points to search for an truly optimal solution or
incorporate another more aggressive optimization strat-
egy into the profile optimization method to get out of
the trap.

For practical problems, the probability distribution
function is likely to be very different from the uniform
distribution used in our numerical simulation. The ac-
tual probability distribution function can be determined
if appropriate historical flight data is available. The use
of a different distribution function can be easily imple-
mented in the multipoint optimization method and the
expected value optimization method by using the weights
corresponding to the distribution function (Huyse 2001).
However, the weights in the profile optimization method
are adaptively adjusted in each optimization iteration
and are not related to the distribution function of the un-
certainty parameter. Therefore, it is important to study
variations of the profile optimization method that incor-
porate the probability distribution function of the uncer-
tainty parameter(s) into the robust optimization model.
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