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1. Three examples of optimization under uncertainty
— Impact Dynamics

— Coupled Aerodynamics/Structures
— Airfoil Shape Optimization

2. Lessons Learned
3. Enabling Technologies ldentified



Three Examples of Optimization under Uncertainty
Characteristics of Test Problems

« Similarities
— Computationally expensive simulations
— Sensitive to uncertain input parameters
— Continuous design variables
— Nonlinear objectives

- Differences
— Number of design variables from 3 - 50
— Optimize expected value or limit probability of failure

— Uncertainty quantification (UQ) either home grown or commercial
codes

— Types of uncertainty
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1. Three examples of optimization under uncertainty
— Impact Dynamics

Lyle, Padula, Stockwell, “Applications of Probabilistic Analysis to Aircraft
Impact Dynamics”, ATAA-2003-1482.

— Coupled Aerodynamics/Structures
— Airfoil Shape Optimization

2. Lessons Learned
3. Enabling Technologies ldentified

References available: http://mdob.larc.nasa.gov/



Impact Dynamics Example
Can we design a vehicle for crashworthiness?
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Notice floor beam and accelerometers



Schematic of Impact Dynamics Problem
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Design for Crashworthiness
A first attempt

Minimize:
Subject to:

vehicle weight
max acceleration < survivable
probability (displacement < allowable) > 75%

- — B - - Determinlstie
—@— Nondeterminlstic

:IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
124 7 s

3 4 5 5 7
[teration number

Weight increases

Displacement, m.

.2 i
-.21 :
-0.22 :
-.23 :
-.24 :

_0.25 _I Ll

- — B — - Determinlstie
—@— Nondeterminlstic

A

.
= -2 - = B2 =

¢ constraint violatsd

3 4 5 3 7 3 g
Iteration number

Displacement physically possible



Lessons Learned

Probabilistic constraints do steer optimizer away from
troublesome regions of design space

But, optimization under uncertainty is more difficult
(e.g. more nonlinear problem) and expensive

Approximate models (e.g. kriging) do reduce
computational cost and provide credible solutions

But, must rebuild approximate models as optimizer
moves through design space



2 e A

Enabling Technologies
In priority order

Approximate engineering analysis for UQ

Uncover designs with higher probability of success
Validate UBM for coupled multidisciplinary problems
Include physics-based UQ in conceptual design
Exploit variable-fidelity models to reduce expense
Enable UBM for time dependent analysis
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1. Three examples of optimization under uncertainty
— Impact Dynamics
— Coupled Aerodynamics/Structures

. Gumbert, Newman, Hou, “Effect of Random Geometric Uncertainty on the
Computational Design of a 3-D Flexible Wing”, AIAA-2002-2806.

— Airfoil Shape Optimization
2. Lessons Learned
3. Enabling Technologies ldentified

References available: http://mdob.larc.nasa.gov/



Robust Shape Optimization for Flexible Wing with Planform Uncertainty
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Coupled Aerodynamic-Structures Wing

! Initialize:

P~ Geometry and Uncerlainties
X FEM K | and Uncerdainties
. Flow Conditions

—————————————————————

reused SASDO components
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Lessons Learned

Adding uncertainty shrinks the design space

Existence of deterministic solution does not
guarantee a existence of non-deterministic solution

Statistical First-order Second Moment Method was
appropriate for this coupled multidisciplinary analysis
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Enabling Technologies

Approximate engineering analysis for UQ

Uncover designs with highest probability of success
Validate UBM for coupled multidisciplinary problems
Include physics-based UQ in conceptual design
Exploit variable-fidelity models to reduce expense
Enable UBM for time dependent analysis
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1. Three examples of optimization under uncertainty
— Impact Dynamics
— Coupled Aerodynamics/Structures
— Airfoil Shape Optimization

. Li and Padula,”Performance Trades Study for Robust Airfoil Shape
Optimization”, AIAA-2003-3790.

2. Lessons Learned
3. Enabling Technologies ldentified

References available: http://mdob.larc.nasa.gov/



Two Known Problems Associated With
Lift Constrained Drag Minimization

T
min Z U Cd(D, Mrg,a*rg) st CJ(D, M@*, Odg;) > C? for 1 <t<r.

Dy tty

Off-design performance
degradation

Noisy optimal airfoil
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Alirfoll Shape Optimization for Design Teams

original airfoil with optimized airfoil

The baseline airplane with ||- A bigger and faster airplane
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Airfoil Shape Optimization
with uncertain operating conditions

4 RANS CFD solutions per iteration Baseline & optimal airfoils
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- What Has Been Accomplished?
— Robust optimization directly minimizes wave drag for 0.7< Mach # <0.8

— New airfoil is similar to baseline but has less drag and no off-design
performance hit

— Use a small number of function evaluations and a large number of design
variables



Lessons Learned

Relatively smooth optimum airfoils found even with
50-100 B-spline coefficients as design variables

« Success of optimization method depends on accurate

gradient calculations (not available for all codes)

- Airfoils optimized including uncertainty are more

acceptable to designers!!

- This work needs to be extended (e.g. 3-D wings)
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Enabling Technologies

Approximate engineering analysis for UQ

Uncover designs with highest probability of success
Validate UBM for coupled multidisciplinary problems
Include physics-based UQ in early design stages
Exploit variable-fidelity models to reduce expense
Enable UBM for time dependent analysis



Concluding Remarks

- Optimization under uncertainty is a new concept for

aerospace engineers at NASA Langley

Impact dynamics and 3-D wing represent learning
experiences for MDO branch

- Airfoil shape optimization pushes the state-of-the-art
- These studies uncover enabling technologies which

require future investment



