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Motivation

• Many examples of poor flow quality of wind-
tunnel nozzles designed for a real gas because

– Poor aerodynamic design
– Real gas behavior not considered in the design
– Thick boundary layers

• Method-of-characteristics/boundary layer becomes invalid

– Inaccurate machining and mechanical design
– Facility constraints
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Motivation (concluded)

• Many examples of poor flow quality of wind-tunnel
nozzles designed for a real gas because
– Poor aerodynamic design
– Real gas behavior not considered in the design
– Thick boundary layers

• MOC/BL becomes invalid
– Inaccurate machining and mechanical design

• Typical inviscid contour methods inadequate for a
real gas

• Need for quick real gas contour design
– Classical boundary-layer correction

• Shock tunnels (have thin BLs)



Wind-Tunnel Nozzle Design
• Design Problem - Given an inflow condition, a centerline Mach

number distribution, and uniform outflow, determine the wall
contour.

• Additional Items for Real Gas Design -

– Area Ratio

– Ratio of specific heats; γ(p,T)

– Compressible Effects (Z=PV/MRT)
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Sivells Design Philosophy
(Ideal Gas)

• Continuous Wall Curvature
– Specify the centerline Mach number distribution such that

the MOC design results in a wall with continuous curvature
– CFD-based optimization procedure based on this principle



Real Gas Design Philosophy

• Continuous Wall Curvature
• Demonstrate using Sivells ideal gas code to design

parts of the real gas design
• Key: Use the conical section to adjust for area ratio
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Inviscid Wind Tunnel Nozzle 
Design Procedure for a Real Gas

Step 1: Subsonic Throat Region

Step 2: Geometric Area Ratio (real gas, contraction effects)

Step 3: Throat to Conical Section Design (Sivells code)

Step 4: Turning Contour Design (Sivells code)

Step 5: Assembling/Scale the Inviscid Design

Subsonic Turning Expansion

Conical

Uniform Flow
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Example Problem

Wind Tunnel Nozzle Designs
Case 1: Real Gas Design Using New Procedure
Case 2: Ideal Gas Design, For Comparison

Constraints
All parameters same except γ & Ζ

Compare CFD computed Mach number and flow angle

Case 1 2

Nozzle Design Real Gas Ideal Gas
CFD/Analysis Real Gas Ideal Gas



Design Conditions
Design Mach Number: 14

Gas Composition: Nitrogen

Total Pressure: 20,000 psi

Total Temperature: 3,000 ºR

Area Ratio:
Ideal Gas (γ=1.4) = 2686

Caloric imperfect gas = 3232.

Real Gas (Zstag=1.312) = 2396.87 Case 1

Ideal Gas(γ=1.4073) = 2396.87 Case 2

Geometry

subsonic approach angle = 45º

ratio of radius of curvature/throat = 3.0

source flow angle = 12.0º

throat radius = 1.0

type = axisymmetric



• Real Gas Model of Nitrogen (AIAA 92-4010)

• CFD Solution
– Unsteady Euler Solution for Subsonic/Transonic Section

– Marching Euler Solution for Supersonic/Hypersonic Section

CFD Validation of Design

e(T) = cv(T)dT∫

p = RT /(1 − b)

cv (T ) = a0 + a1T + a2T
2 + a3T

3 + a4T
4 + a5T

5
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Centerline Mach Number Distribution
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Nozzle Designed Using Real Gas
Procedure

• NASA Langley Research Center
– HTT pilot facility, Mach 5, products CH4+air

– Arc-Heated Scramjet Test Facility, Mach 6, air (in process)

• CALSPAN, Buffalo NY
– LENS, Mach 8, air (AIAA 96-0585)

– LENS, Mach 4.5, air



Summary
• A procedure for real gas inviscid wind-tunnel nozzle

design was presented

• An example design was presented
– Wall coordinates are given in the paper

• Flow quality of real gas design procedure was evaluated
using CFD
– Real gas design gave excellent flow quality based on CFD analysis

– Variations in Mach number and flow angle were similar to the
variations obtained when designing for an ideal gas, with minor
variations in absolute values

• Method has been used at Langley Research Center and
elsewhere to design hypersonic wind-tunnel nozzles with
good success

• Design should be validated using CFD to ensure nozzle
flow quality


