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MDO Definition

Multidisciplinary Design Optimization 
(MDO) is a methodology for the design of 
complex engineering systems and 
subsystems that coherently exploits the 
synergism of mutually interacting 
phenomena (and system components)
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Objective

• Identify grid generation issues of particular 
importance to MDO

• Challenge the grid generation community to 
develop tools suitable for automated 
multidisciplinary analysis and design 
optimization of aerospace vehicles



Jamshid A. Samareh (j.a.samareh@larc.nasa.gov)

Motivation
High-Fidelity MDO of an aerospace vehicle :

– Has complex geometry with many details

– Requires consistent shape parameterization across all disciplines

– Requires rapid and automatic grid generation tools

– Requires sensitivity derivatives

– Has many disciplines and processes (e.g,. CFD & CSM)
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High-Fidelity MDO of an Aerospace Vehicle
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Processes for Multidisciplinary Analysis of an HSCT
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Motivation

“High fidelity analysis process is difficult or impossible to 
include in MDO”
– “Non Automated”

– “Very long computing time”

1998, Giesing & Barthelemy, “A Summary of Industry MDO 
Applications and Needs”, AIAA 98-4737
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Geometry Creation

Current Geometry/Grid Processes for High-Fidelity 
Analysis

Analysis

Grid Generation

Geometry Abstraction

Massage the data (GUI)

Grid reworks (GUI)
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Geometry Description

Geometry Creation

Parameterization

Geometry/Grid Processes for High-Fidelity MDO

Design
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Sensitivity Analysis

Grid Generation

Geometry Abstraction
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Analysis

Automated and robust tools are 
essential for MDO applications
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Sensitivity Analysis

• Manual differentiation

• Automatic differentiation tools (e.g., ADIFOR and ADIC)

• Complex variables

• Finite-difference approximation
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Finite-Difference Approximation Error for 
Sensitivity Derivatives 

Parameterized
HSCT Model
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Desired Characteristics of Shape 
Parameterization

The shape parameterization must:

• Be consistent across all disciplines

• Be automatic (automatic grid tools are not available for all disciplines)

• Have a short implementation cycle time

• Provide a compact set of design variables (10s vs. 1000s)

• Provide sensitivity derivatives (preferably analytical, or accurate 
finite-difference approximation)

Geometry Creation

Parameterization

Sensitivity Analysis

Grid Generation

Geometry Abstraction
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Techniques for Shape Parameterization
(Choice of shape parameterization has impact on the MDO formulation)

• Basis vector (geometry changes are represented by a set of vectors)

• Partial differential equation (geometry is represented by PDE )

• Discrete (grid points are used as design variables)

• Analytical (geometry changes are represented by analytical functions)

• Polynomial and spline (geometry is defined by polynomial and spline 
representations )

ä CAD (based on commercial feature-based solid modeling CAD systems)

ä Domain element (based on macro elements)

ä Free-form deformation (based on a computer animation algorithm)

ä MASSOUD, multidisciplinary aero/structural shape optimization using 
deformation, (based on advanced computer animation algorithms)
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Shape Parameterization Using Feature-Based Solid 
Modeling CAD

• Based on Boolean operations and dimension-driven objects

• Uses simple top-down approach with high-level geometric 
constructions

• Uses topologically complete geometry (solids) 

• Design changes are not time consuming 
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Domain Element Technique
• Based on macro elements

• Simple to implement

• Available in some commercial FE codes

• Avoids grid generation by deforming the baseline grid
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Free-Form Deformation Technique

• Based on algorithm used in computer animation

• Avoids grid generation by deforming the baseline grid
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Multidisciplinary Aerodynamic-Structural Shape Optimization Using 
Deformation
(MASSOUD)

• Parameterizes the changes in shape, not the shape itself 
(reduces the number of design variables)

• Parameterizes the discipline grids (avoids manual grid 
regeneration)

• Uses advanced soft object animation algorithms for 
deforming grids 
– NURBS surface (camber and thickness)

– Free-form deformation (planform)

– Nonlinear global deformation (twist and dihedral)
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Nonlinear Global Deformation
(twist and dihedral)

Twist parameterization
of a generic transport

Extreme deformation
of a generic transport

Baseline
Model

Deformed
Model



Jamshid A. Samareh (j.a.samareh@larc.nasa.gov)

Multidisciplinary Shape Parameterization of an 
HSCT Model

FE Model

Sensitivity of CFD
grid wrt root chord

CFD Model

• Automated process

• 27 aerodynamic shape design variables

• Analytical sensitivity
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Nonlinear Aerodynamic Shape Optimization Results
Final design CD/CD(initial)=0.924, Fixed CL

Collaborators:
Bob Biedron
Larry Green
Joanne Walsh
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Model Abstraction

• CSM model design and abstraction

• Dimensional reduction (solid to beams and/or shells)

• Deletion and/or suppression of small features (e.g., bolt holes)

• Modification (e.g., closing trailing edge)

• Addition (e.g., surface boundaries for gridding) 

• Combination and/or split geometry parts (e.g., creating bigger 
surfaces for gridding)

Geometry Creation

Parameterization

Sensitivity Analysis

Grid Generation

Geometry Abstraction
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Grid Generation

• Sensitivity analysis should be incorporated into grid 
generation tools

• Structured grids with fixed topology are only suitable 
for MDO applications with small geometry changes

• Structured grids can not be incorporated into MDO 
applications with moderate to high geometry changes 
without automatic topology creation 

• Unstructured and Cartesian grids are well suited for 
MDO applications

Geometry Creation

Parameterization

Sensitivity Analysis

Grid Generation

Geometry Abstraction
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Grid Regeneration and Deformation

• Techniques

- Regenerate the entire grid

- Regenerate the affected areas

- Deform grid (maintains the baseline grid topology and connectivity)

• Structured grid generation can be fully automated for fixed grid topology

• Unstructured grid generation can be fully automated for a complete solid 
model
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Issues and Challenges
“Design automation tools will thrive in the next decade” CAD Report, January 2000

• There are three major issues that need to be considered by grid generation 
community:
• Use of GUI should be limited to problem set up and monitoring phases
• Sensitivity analysis should be built into the grid generation tools
• Grid generation tools must be robust (eliminating rework)

• There are three major challenges:
• Automation of geometry abstraction
• Automation of grid generation tools
• CAD-based sensitivity analysis (preferably analytical)
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Thank You

Multidisciplinary Optimization Branch (MDOB)

http://fmad-www.larc.nasa.gov/mdob/MDOB

AIAA Technical Committee on Multidisciplinary Design Optimization (MDO) 

http://endo.sandia.gov/AIAA_MDOTC/

Ten invited white paper on industrial experience with MDO and the summary 
paper by Giesing & Barthelemy

http://endo.sandia.gov/AIAA_MDOTC/sponsored/mao98_whitepaper.html


