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Conventional Approach

mBin F(Q(X(B).B), X(B). B)

subject to constraints

g; (Q(X(B),B), X(B), B)=0,
1=1,2,... m

where Q is determined by

R(Q(X(B). B), X(B), B)=0,

the nonlinear aerodynamic state
(flow) equations.

For gradient based optimization
we also need

R'(Q",Q, X", X(B), B)=0




Optimization Challenges

® why SAADQ?
—To reduce the cost incurred by well-converged, iterative analyses
and sensitivity analyses at non—optimal points in design space

® how SAADQO?
—Interleaf optimization updates with iterative discipline analysis
—Require better convergence for R and R’ as optimization progresses
—Previously demonstrated for 1-D and 2—-D aerodynamic applications

® 3D SAADO goals
—-Results which agree with conventional optimization
—Computational cost less than conventional optimization
—Minimal modifications to discipline analysis codes



Optimization Challenges
SAADO Approach

min F(Q, X(B), )
B.Q

subject to constraints

g;(Q. X(B), B)=0,

1=1,2,... m
and

R(Q, X(B).B)=0

P artial convergence, implies:

—infeasibility in early design
steps

—contribution to reduction of
design variable domain, i.e.

dR R - _
ORAQ+IR ' AB+R =0
90 Q+ ox < 4k




Process Implementation
Flow Chart for Aerodynamic Shape Optimization
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Process Implementation
Code Descriptions

Code : Sensitivity
Name Analysis Analysis
RAPID Surface geometry generation ADIFOR
Rapid Aircraft Parameterization in Design
CSCMDO Volume mesh generation ADIC
Transfinite interpolation of deformations
Single—block, 97x25x17=36864 cells
CFEL3D General structured mesh Euler or ADIFOR
Navier—Stokes flow analysis Incremental
Euler used in this study lterative
DOT Optimization suite, Vanderplaats R&D, Inc. gradients
Used Sequential Quadratic Programming provided, not
computed

(SQP) and Method of Feasible Directions (MFD)



Application Problem
Aerodynamic Shape Optimization of a 3D Wing

* Objective function: negative lift to drag ratio, -L/D
* Constraints:

— minimum payload: C, X S= Lmin

— maximum root bending moment:  C, < C|max

~ maximum pitching moment:  Cy<Cry

— minimum section thickness
— minimum leading edge radius

® Design variables: planform and section



Application Problems
Wing Configuration and Parameterization

5 DV: 2 DV + semispan, twist, root camber




Results
SAADO vs. Conventional

® Two planform—design variable study
— tip chord, ¢ ¢, and tip setback, x
— Subsonic, M ,,=0.5, a=3° (shown in paper)
— Supercritical, M ,=0.8, a=1°

— Ensure comparable results with conventional
approach

— Use several optimization techniques
— Readily visualizable

® Multiple design variable sample cases
— Supercritical, M ,=0.8, a=1°

— Section variables and planform variables
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Two—Design—Variable Study

Domain, Objective Function Contours, and Endpoints
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Two—-Design—Variable Study
MFD Optimization Paths
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Two—Design—Variable Study
SQP Optimization Paths




Two—Design—Variable Study
SDMF Optimization Paths
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Two—Design—Variable Study

Final Design

Upper surface pressure contours
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Two—Design—Variable Study

Relative cost

Relative Computational Cost
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Multiple—Design—Variable Cases
Design Comparisons
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Relative cost

Multiple—Design—Variable Cases
Relative Computational Cost
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Conclusions

® |nitial 3D wing SAADO results obtained.

® SAADO finds essentially the same local

minimum as conventional optimization
techniques.

® SAADO is computationally more
efficient than conventional techniques.

® Gradient computation times dominate
SAADO.

® SAADO requires few modifications to

the analysis and senstitivity analysis
codes.
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Current and Future Development

® Adjoint formulation to address gradient cost

® Simultaneous multidisciplinary design
optimization
— Aerodynamic design of flexible wing
— Simultaneous aerodynamic and structural
design optimization

® Application to other problems/configurations
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