
Demonstration of Automatically-Generated
Adjoint Code For Use in

Aerodynamic Shape Optimization

Lawrence L. Green
NASA Langley Research Center

Alan Carle and Mike Fagan
Rice University

Outline

• Introduction
• Problem description

• Preliminary optimization results

• Lessons learned for future work

Introduction
Summary of Gradient Methods

• Finite-Difference (FD) approximations (step size dependent)
• Forward / reverse-mode manual differentiation (tedious, error-prone)

• Symbolic manipulators (limited scope of application)

• Forward / reverse-mode automatic differentiation (AD)
– Fast, easy, and accurate
– Substantial storage requirement (memory and / or disk)
– ADIFOR (forward-mode AD) - best for few design variables and

many outputs
– ADJIFOR (reverse-mode AD) - best for many design variables and

few outputs

Introduction
ADJIFOR Automatic Adjoint Code Generator

• Developed by Carle and Fagan of Rice University
• Funding by NASA LaRC , CRPC, NSF, and DOE

• Prototype automatic adjoint code generation tool
– Based upon previous ADIFOR tool for Fortran
– User specifies dependent and independent variables in code
– ADJIFOR:

• traces dependencies through the program
• formulates exact adjoint-form derivatives
• generates new source code to compute function and gradient
• Can handle iterations, branching, and derivative singularities

• AIAA 98-4807 by Carle, Fagan, and Green (1998 MA&O Conference)
– Demonstration of ADJIFOR on real applications code (CFL3D)
– Derivative validation for accuracy; performance summary

Introduction
ADJIFOR Technology Development Stages

• Develop ADJIFOR and demonstrate on model problems (Rice)
• Demonstrate that ADJIFOR produces correct adjoint derivatives for

production CFD code (Rice / Langley)

• Demonstrate the use of ADJIFOR-generated CFD codes in simple
aerodynamic shape optimization (Langley)

• Transition ADJIFOR technology for use in industry design
(industry / Langley / Rice)

Problem Description
Geometry and Grid Generation

• Surface and grid quality were low in consideration
• Simple Fortran grid code used for ADIFOR / ADJIFOR studies

– As many design variables (DV) as possible for adjoint studies
– 8 DV per wing section (section and planform)

• Baseline geometry is a swept / tapered wing

• Exact surface and volume grid adjoints computed via ADJIFOR

• Single-block grids split for parallel execution on NAS Origin 2000
• Volume grid sizes: 17x5x5, 33x9x9, 65x17x17, 129x65x33 grid points

Problem Description
Computational Fluid Dynamics

• ADJIFOR demonstration on production code and realistic flow problem
• CFL3D code by Thomas, Rumsey, and Biedron of NASA LaRC

• Solves Euler / Navier-Stokes equations in conservation form

• Numerous grid, solver, and convergence acceleration options

• Sequential (CFL3D 5.0) and MPI parallel (CFL3D 4.1) code versions

• Exact geometric derivatives of lift-to-drag ratio computed via ADJIFOR
• Test case: steady, inviscid, transonic (M = 0.84, α = 3.06 degrees)

flow around 3-D wing using point-matched grids with multigrid

Problem Description
Optimization

• Optimization demonstration to highlight ADJIFOR-generated code use
• Joanne Walsh’s JOPT code (CONMIN + linear approximation to

nonlinear optimization problem, based upon function and gradient)

• Optimization objective - maximize CL / CD

• Up to 168 design variables (8 DV per section, 21 wing sections)

• DV bounds & move limits = geometric consistency & small DV changes

• Constrained and unconstrained optimizations executed on workstation
• Function / gradient execution on NAS Origin 2000 (33 processors)

• Use of planform DV in transonic optimization, without smoothing, results
in “interesting” wing shapes

Problem Description
Optimization (Concluded)

MYGRID

CFL3D

CFL3D.ADJ

MYGRID.ADJ

CONMIN

F = F0 + (dF / dX)0∆X

Function +
 Gradient

JOPT

Design variables X

Grid

Function, F

Intermediate adjoint

Gradient, dF / dX

Design variables X

Design variables ∆X

0 5 10 15
10

11

12

13

14

15
C

L/
C

D

OPTIMIZATION ITERATION

Results
Planform and Section Optimization, M = 0.84, α = 3.06 degrees

33x9x9 grid, 11 wing sections, 15 optimization cycles

10% move limits for all cycles
xle, crd, cmx, xcm, thk, and tws active

BASELINE OPTIMIZED

WING SECTIONS

BASELINE OPTIMIZED

WING PLANFORM

Wing Root and Tip Constrained

Results
Planform and Section Optimization, M = 0.84, α = 3.06 degrees

33x9x9 grid, 11 wing sections, 15 optimization cycles

10% move limits for all cycles
xle, crd, cmx, xcm, thk, and tws active

Ò Ò
Ò Ò

10% - 1% move limits
xle, crd, and thk active

Results
Planform and Thickness Optimization, M = 0.84, α = 3.06 degrees
129x65x33 grid, 32 zones, 21 wing sections, 9 optimization cycles

Results
Planform and Thickness Optimization, M = 0.84, α = 3.06 degrees
129x65x33 grid 32 zones, 21 wing sections, 9 optimization cycles

Baseline wing “Optimized” wing

10% - 1% move limits
xle, crd, and thk active

 coloring proportional to the
surface pressure coefficient
 for 33x9x9 grid analysis of

129x65x33 grid design

Results
Time, Memory and Disk Requirements

METHOD TIME MEMORY DISK

FUNCTION
EVALUATION

1 1 1

ONE-SIDED FD, NDV NDV + 1 1 1

ONE-SIDED FD, NDV
WITH RESTART

.2 - .5 * NDV 1 1

HAND-CODED
ADJOINT

2 - 3 2 - 3 2

ADIFOR, NDV
FORWARD MODE

NDV -
2*NDV

~NDV NDV X GRID

ADJIFOR, NDV
REVERSE MODE

7 - 15 2 – 3.5 6 - 14

ADJIFOR timing depends on computer and compiler options used;
 memory depends on grid size, number of outputs & multigrid options;
 disk = 3 (sequential) - 4 (parallel) x memory

When to Use ADJIFOR?

ADJIFOR HAND-CODED ADJOINT

+ One day turnaround for
 new application

- Requires roughly a year
or more work to develop

- 2 – 4 times as costly as
 hand-coded adjoint

+ Requires half (or less)
 of the computational
 resources of ADJIFOR

 Used when premium
 Is placed on getting
 new application up
 and running

 Used when application
 is stable and premium
 is placed on speed and
 memory

Status Report
ADJIFOR Technology Development Stages

 Develop ADJIFOR and demonstrate on model problems (Rice)
 Demonstrate that ADJIFOR produces correct adjoint derivatives for

 production CFD code (Rice / Langley)

 Demonstrate the use of ADJIFOR-generated CFD codes in simple

 aerodynamic shape optimization (Langley)

• Transition ADJIFOR technology for use in industry design
 (Langley / Rice / industry)

Lessons Learned for Future Work

• Code generation and performance
– Iterated reverse mode used to reduce adjoint storage
– Additional storage reductions may be possible
– Improved ADJIFOR-generated code structure
– Compiler options

• Engineering application
– Beneficial effect of multigrid on CFL3D adjoint code performance
– Use of composite objective function (ala Reuther and Kuruvila)
 OBJ = A*CL + B*CD + C*(CL/CD) + ... + K* ∆Minlet + L* ∆Msurface + …

– Use ADIFOR-generated code to compute grid (also provides grid
derivatives for use in geometric optimization constraints)

– Include turbulence models in adjoint differentiation
– Include geometric effects of reference quantities (area, chord, and

moment locations) in adjoint differentiation
– Include DV smoothing to improve design acceptability

