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Introduction / motivation
• Stability and control derivatives (S&C)

– Linear models - simulation and control law design
– Derivatives of aircraft forces and moments

• Angle of attack (α) - CNα, CAα, Cmα

• Angle of sideslip (β) - CSβ, Clβ, Cnβ

• Normal deflections of grid surface (Xn)
–  ClXn, CmXn, CnXn

• Experimental  computational determination
– Faster, cheaper, unique capabilities
– Incorporation in multidisciplinary design



Example configuration
Lockheed-Martin Tactical Aircraft Systems -

Innovative Control Effectors (ICE)
• Concept vehicle to explore stealth and controllability
• Tailless with highly swept, sharp leading edges
• Wind tunnel (WT) data

– Low speed, transonic, and supersonic
– Large αααα, ββββ range
– Conventional / novel control effectors

• ADIFOR-CFD Studies
– Mach = 0.6, ReMAC = 4.0M
– Limited αααα, ββββ range
– Novel shape change effectors



Example configuration
Lockheed-Martin Tactical Aircraft Systems -

Innovative Control Effectors (ICE)

Relative Wind V

CA

CS
Cm

Cn

CN

Cl
α

β



Sensitivity methods

• Central finite difference (CD) approximations
– Step size dependent

• Automatic Differentiation (AD)
– Exact
– Augment source code to produce user specified

derivatives
• Chain rule of calculus
• Adjoint formulation



User specified

ADIFOR / ADJIFOR

• ADIFOR 3.0 package
– ADIFOR (Automatic Differentiation of FORTRAN)
– ADJIFOR (Automatic Adjoint Formulation in FORTRAN)
– Rice University, Argonne National Laboratory

Analysis source code
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ADIFOR                        ADJIFOR
• “Forward mode”
• Chain rule of calculus
• Step-by-step propagation

through elementary pieces
of the code

• Best for more dependent
than independent variables

• “Reverse Mode”
• Discrete adjoint formulation
• Backward propagation

of adjoints through
the code

• Best for more independent
than dependent variables
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• Ashby - NASA Ames Research Center
• Constant doublet and source strength over each panel

• No compressibility or boundary layer corrections used
• 2560 panel full span model

• NASA-LaRC HPCCP / CAS Origin 2000

CFD Codes
PMARC (Panel Method Ames Research Center)



CFD Codes
CFL3D (Computational Fluids Laboratory

3-Dimensional)
• Thomas, et al - NASA Langley Research Center
• Euler and turbulent Navier-Stokes (N-S)
• Parallel execution (MPI)

• Euler and N-S Spalart-Allmaras (S-A) cases performed
• Euler 3.1 M grid points full span Long. + Lat.
• N-S 1.6 M grid points half span Long.

• NASA-LaRC HPCCP/CAS Origin 2000
• Grid - GEOLAB



AD Validation
• The forces and moments from the AD-CFD codes

– Matched the original CFD codes
– Compared favorably with WT data

• Lateral WT asymmetry observed above
5 deg angle of attack

• Affects CD-WT derivatives
• AD-CFD derivatives

– Matched CD of the CFD codes
– Compared with CD of the WT data



• Longitudinal
– CD - WT
– ADIFOR - PMARC
– ADIFOR - CFL3D

• Euler (medium and fine grid)
• N-S S-A (half span fine grid)

• Lateral
– CD - WT
– ADIFOR - PMARC
– ADIFOR - CFL3D

• Euler (medium and fine grid)
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ADIFOR Results
Static stability derivatives
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Normal force coefficient αααα derivative (M=0.60)
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ADIFOR Results
Normal force coefficient αααα derivative (M=0.60)



ADIFOR Results
Longitudinal αααα derivatives (M=0.60)
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ADIFOR Results
Side force coefficient ββββ derivative (M=0.60)
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Lateral ββββ derivatives (M=0.60)
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ADJIFOR-PMARC Results
Control effectiveness derivatives

• Aircraft moment coefficient sensitivity to configuration 
shape changes



ADJIFOR-PMARC Results
Control effectiveness derivative definition
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Sensitivities
– Pitch, Roll, and Yaw moment coefficient

derivatives with respect to a displacement of
the grid points normal to the surface

– Calculated for each of 1353 surface grid points
– Interpolated over the configuration
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ADJIFOR-PMARC Results
Pitch control effectiveness sensitivity contours

(incompressible flow, αααα=4.39)



Lower Surface
Trailing-Edge
Array

Upper Surface
Trailing-Edge Array

Upper Surface
Leading-Edge

Array

Upper Surface
Wingtip Array

All elements
activated

elements activate
    inboard to outboard
as more control is
required

Most Promising Designs



ICE Simulation
– Mach 0.6, 15,000 ft. –
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ADJIFOR-PMARC Timing / Memory

Code Derivative Disk Time

PMARC None N/A 4 min.

CD-PMARC 1353 Normal
Deflections

N/A 7.5 days
(est.)

ADJIFOR-
PMARC

1353 Normal
Deflections

6000*
Mbytes

20 min.

*Scratch file usage is expected to be reduced or
eliminated with the final release of ADIFOR3.0 in
Fall 1999



Conclusions
• CFD forces / moments agree well with wind tunnel (WT) data
• ADIFOR, ADJIFOR techniques have been demonstrated

– Directly compute S&C derivatives from CFD codes
• Compare with CD-CFD and CD-WT
• Used in multidisciplinary effector / control law design

• Asymmetry in lateral WT - affects CD-WT derivatives
• ADIFOR-CFL3D may capture effects that are missed by

taking a large step in WT data (4 deg beta)
• Panel method  Euler  turbulent N-S (cost & accuracy)
• Improved N-S grid, convergence studies, and lateral N-S
• ADJIFOR-CFD gives new capabilities (not possible in WT)

at reasonable cost and significantly enhanced speed


