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Motivation: optimization of engineering systems governed by differential equations

X-33 Hyper-X

� Computational models grow in complexity to consume computing power available
at any moment

� Objectives of an analyst (closest approximation to reality) can be at odds with
objectives of a designer (improvement with respect to design criteria)
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Problem
� The analysis problem:Givenx, solve a disciplinary analysis equation or a system

of coupled analysis equations

A(x; u(x)) = 0

for u that describes the physical behavior of the system.

� The design problem:Solve

minimize
x

f(x; u(x))

subject to h(x; u(x)) = 0

g(x; u(x)) � 0

xl � x � xu;

where, givenx,u(x) is determined fromA(x; u(x)) = 0.

� The use of high-fidelity models (high-resolution or detailed physics) at every
iteration of an optimization procedure can be prohibitively expensive
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1st Order Approximation/Model Management Optimization
(AMMO)

� Objective

– Enable design optimization with simulations by minimizing expense of
using high-fidelity models in single-discipline optimization and MDO

� Idea

– The designer can be satisfied with intermediate results of lower fidelity,
provided they lead to improved designs; only the optimal design must
be consistent with accurate, high-fidelity analysis

� Idea

– For any optimization subproblem, replace the local Taylor series model
with a lower-fidelity model (surrogate) that satisfies first-order
consistency conditions with respect to a model designated as “truth”
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Related Work
� Heuristic approximate techniques long in use in engineering optimization

(see paper for references)

� Systematic first-order model management can be imposed on any
gradient-based optimization algorithm

– Alexandrov, 1996; Lewis, 1996 (unconstrained)

– Alexandrov, Dennis, Lewis, Torczon, 1997 (unconstrained)

– Alexandrov, 1998 (constrained and multilevel)

– Alexandrov, Lewis, Gumbert, Green, Newman, 1999 (variable-resolution
models with AMMO frameworks based on SQP, augmented Lagrangian and
multilevel algorithms)

– Lewis, Nash, 2000 (models based on multigrid approach)

– Alexandrov, Nielsen, Lewis, Anderson, 2000 (variable-fidelity physics models
with bound-constrained AMMO)
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Example: First-Order AMMO for Bound Constrained Optimization

Initialize xc,�c

Do until convergence:
Select modelac with ac(xc) = f(xc); rac(xc) = rf(xc)

Solve approximately forsc = x� xc:

minimize
s

ac(xc + s)

subject to l � x � u

k s k
1

� �c

Compute�c �

f(xc)�f(xc+sc)

f(xc)�ac(xc+sc)
Acceptsc if f(xc) > f(xc + sc); otherwise reject
Update�c

End do

�c � 10�5 Reduce�c

10�5 < �c � 0:6 Leave�c unchanged

�c > 0:6 Increase�c
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Consistency, Convergence, Performance
� First-order consistency conditions:

ac(xc) = f(xc)

rac(xc) = rf(xc)

� ac mimics the local behavior of a Taylor-series model aroundxc

� Easily enforced via “�-correction” due to Chang, Haftka, Giles, Kao, 1993:

– Givenfhi(x) and flo(x), define�(x) � fhi(x)

flo(x)

– Givenxc, build �c(x) = �(xc) +r�(xc)
T (x� xc)

– Thenac(x) = �c(x)flo(x) satisfies the consistency conditions atxc
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Consistency, Convergence, Performance, cont.
� For convergence, need only a notion of two models, one arbitrarily

designated “high fidelity” or “truth”, the other - “low fidelity”

� Convergence relies on the consistency conditions and standard
assumptions for the convergence analysis of the underlying algorithm
(assumption of strict first-order consistency can be relaxed)

� Practical efficiency

– Problem/model dependent

– Depends on the ability to transfer computational load onto low-fidelity
computation, which...

– Depends on the predictive quality of the low-fidelity models (surrogates)

– In the worst case, AMMO is conventional optimization
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Examples of Variable-Fidelity Models for Use in AMMO
� Data-fitting models (polynomial RS, splines, kriging)

– Rely directly on hi-fi information; do not require derivatives; simple to
construct; difficult to sample; “curse of dimensionality”

� Reduced-order models

– Use reduced-order bases (constructed as a span of solutions and possibly
derivatives at some points) to represent field variables at other points

� Variable-accuracy models

– Converge analyses to a user-specified tolerance

� Variable-resolution models

– Executing a single physical model on meshes of varying degree of refinement

� Variable-fidelity physics models

– E.g., in aerodynamics, physical models range from inviscid, irrotational,
incompressible flow to Navier-Stokes equations for nonlinear viscous flow

n.alexandrov@larc.nasa.gov Multidisciplinary Optimization Branch, NASA Langley Research Center



First International Workshop on Surrogate Modeling and Space Mapping for Engineering Optimization, 16-19 November 2000, Lyngby, Denmark 11

Computational Demonstrations
� Because of data-fitting model limitations, we have focused on models that

are independent of the number of variables

� Independence wrt dimension is important: in preliminary design,
problems of modest size number O(100) variables

� AMMO admits a wide variety of models and algorithms; demonstrations
are aimed at accumulating realistic experience to validate the algorithmic
performance

� Because we cannot predicta priori the relative descent characteristics of
models, must include cases of favorable and unfavorable relationship
between models

� Aerodynamic shape optimization is a good test problem: practically
important, computationally intensive, comes in a variety of dimensions
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Demonstration Problems: Aerodynamic Optimization

minimize Integrated quantities, such as� L
D

( lift
drag)or CD (drag coefficient)

subject to constraints on, e.g., pitching and rolling moment coefficients, etc.

xl � x � xu
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Managing Variable-Resolution Models: Optimization of a 3D Wing
(AIAA-2000-0841, Alexandrov, Lewis, Gumbert, Green, Newman)

� Problem: minimize� L
D

s.t. nonlinear constraints

� Variable-resolution models: Euler equations on a variety of meshes

� Algorithms: based on SQP, augmented Lagrangian, a multilevel approach
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� Threefold improvement in terms of hi-fi function and derivative evaluations across
all AMMO algorithms tested
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Managing Variable-Fidelity Physics Models: Multi-Element Airfoil
(AIAA-2000-4886, Alexandrov, Nielsen, Lewis, Anderson)

� A two-element airfoil designed to operate in a transonic regime — inclusion of
viscous effects is very important

� Governing equations: time-dependent Reynolds-averaged Navier-Stokes
A
@Q

@t
+

I
@


~Fi � ^ndl�
I

@


~Fv � ^ndl = 0;

where ~Fi and ~Fv are the inviscid and viscous fluxes, respectively

� Flow solver (FUN2D) – unstructured mesh methodology (Anderson, 1994)

� Sensitivity derivatives – hand-coded adjoint approach (Anderson, 1997)

� Conditions:

– M1 = 0:75

– Re = 9� 106

– � = 1� (global angle of attack)
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Multi-Element Airfoil, cont.
� Hi-fi model – FUN2D analysis in RANS mode

� Lo-fi model – FUN2D analysis in Euler mode

� Computing on SGI OriginTM 2000, 4 R1OK processors

Viscous mesh:
10449 nodes and 20900 triangles

t/analysis� 21 min
t/sensitivity� 21 or 42 min

Inviscid mesh:
1947 nodes and 3896 triangles

t/analysis� 23 sec
t/sensitivity� 100 or 77 sec

n.alexandrov@larc.nasa.gov Multidisciplinary Optimization Branch, NASA Langley Research Center



First International Workshop on Surrogate Modeling and Space Mapping for Engineering Optimization, 16-19 November 2000, Lyngby, Denmark 16

Multi-Element Airfoil: Viscous Effects
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� Boundary and shear layers are visible in the viscous case.
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Multi-Element Airfoil: Computational Experiments
� Objective function: minimize drag coefficient subject to bounds on variables

� Case 1:(for visualization)

– Variables: angle of attack, y-displacement of the flap

– Solve problem with hi-fi models alone using a commercial optimization code
(PORT, Bell Labs)

– Solve the problem with AMMO, PORT used for lo-fi subproblems

� Case 2:

– Variables: angle of attack, y-displacement of the flap, geometry description of
the airfoil; 84 variables total

– Same experiment
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Multi-Element Airfoil: Models
� Time/function for inviscid model negligible compared to viscous model

� Descent trends are reversed — unusual but a good test
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Multi-Element Airfoil: AMMO Iterations with 2 Variables

Iteration 1. Starting point: � = 1:0, y-disp= 0:0

High-fidelity objective vs. corrected low-fidelity objective
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Multi-Element Airfoil: AMMO Iterations with 2 Variables, cont.
� Similar effect in the next iteration

� Solution (� = 1:6305� , flap y-displacement= �0:0048) located at
iteration 2

� C initial

D = 0:0171 at (� = 1�, flap y-displacement= 0)

� Cfinal

D = 0:0148, a decrease of approximately13:45%.
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Multi-Element Airfoil: Performance Summary

Notation: No. functions / No. Gradients

Test hi-fi eval lo-fi eval total t factor

PORT with hi-fi analyses, 2 var 14/13 � 12 hrs

AMMO, 2 var 3/3 19/9 � 2:41hrs � 5

PORT with hi-fi analyses, 84 var 19/19 � 35 hrs

AMMO, 84 var 4/4 23/8 � 7:2hrs � 5
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Applicability: 1-Order vs 0-Order Model Management (e.g., RSM)
� Sensitivities

– 1-Order: Need

– 0-Order: Do not need, in general

� Verification of improvement in the true response

– 1-Order: Consistency conditions guarantee that improvement can be ensured
by taking small steps, if necessary

– 0-Order: No such guarantee; may have to revert to hi-fi optimization

� Enforcing sufficient decrease conditions

– 1-Order: Having sensitivities, can enforce sufficient decrease

– 0-Order: Absence of sensitivity information restricts the class of optimization
algorithms used with model management
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Applicability: 1-Order vs 0-Order Model Management, cont.
� Problem size

– 1-Order: Can use models that do not depend on problem size

– 0-Order: Difficult to construct approximations for more than, say, 20–40
variables; in general, need a considerable number of samples to capture trends
even for relatively simple and small problems

� Sampling in engineering problems

– 1-Order: Not an issue if we use models not based on data-fitting

– 0-Order: May be difficult to guarantee that hi-fi samples correspond to
physically meaningful designs. Example: shape optimization problems.

� Range of models

– 1-Order: The entire range of models may be used

– 0-Order: May use variable-accuracy or variable-resolution models as
predictors of promising designs (not always); variable-fidelity physics models
cannot be used, in general
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Concluding Remarks
� Sensitivity information is becoming increasingly available with analysis

codes (automatic differentiation, efficient adjoint techniques) — we believe
first-order AMMO will prove very helpful

� The results are promising

– Significant savings over conventional optimization in terms of hi-fi evaluations

– Capture descent behavior with the help of corrections, despite sometimes
significant dissimilarities between lo-fi and hi-fi models

– First-order information is indispensable when model trends are dissimilar

� For large problems, variable-fidelity physics modeling may be
recommended

� Current work: Incorporation of a posteriorierror estimates into AMMO
(with Patera et al.); other models, AMMO schemes, larger problems
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