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Outline
� Overview of the area and MS7/MS13

� Engineering optimization with variable-fidelity models

– The problem

– First-order approximation/model management optimization (AMMO)

– Some demonstration problems and results

– Concluding remarks
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Optimization of Engineering Systems Governed by Differential Equations

X-33 Hyper-X

� Engineering design optimization problem:Improve or optimize several objectives
subject to satisfying a set of design and physical constraints from contributing
disciplines (e.g., aerodynamics, structures, propulsion, etc.); some of the constraints
are coupled sets of differential equations

� Other categories of problems: parameter estimation, optimal control
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Optimization of Engineering Systems Governed by Differential Equations, cont.

(see the current SIAG/OPT Views-and-News)

Single-Discipline Optimization

minimize

x

f(x; u(x))
subject to h(x; u(x)) = 0

g(x; u(x)) � 0

xl � x � xu;

where, givenx,u(x) is computed via

A(x; u(x)) = 0

Multidisciplinary Optimization (MDO)

minimize

x

f(x; u(x))

subject to h(x; u(x)) = 0

g(x; u(x)) � 0

xl � x � xu;

where, given x, u(x) is computed via

A(x; u(x)) =

0
BB@
A1(x; u1(x); : : : ; uN(x))

...

AN(x; u1(x); : : : ; uN(x));
1

CCA = 0

Multidisciplinary analysis: physically consistent and thus meaningful design
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Optimization of Engineering Systems Governed by Differential Equations, cont.
� Difficulties specific to optimization subject to DE:

– Expensive function and derivative evaluation (especially in MDO)

– Problem formulation

– Potentially large and/or nonsmooth problems

� MS7: Addressing the expense of function and derivative evaluation

– Model building (Machiels, LLNL; Patera et al., MIT) and model management
in optimization (Alexandrov, NASA Langley; Lewis, W&M)

� MS13: Optimization techniques and applications

– Parameter estimation in models for pesticide transport (Bock et al., Heidelberg)

– Ship design optimization (Campana et al., INSEAN)

– Optimal control (Giesy et al., NASA Langley)

– Model identification (Meade et al., Rice)
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Engineering Optimization with Variable-Fidelity Models

Solving

minimize f(x)

subject to h(x) = 0

g(x) � 0

xl � x � xu

with expensivef , g, h: evaluate via high-fidelity or high-resolution analyses

� Minimize expense of using in single-discipline optimization and MDO (additional
benefit - easier integration and interactive MDO)

� Heuristic approximate techniques long in use in engineering optimization

� Present work: Systematic model management that guarantees convergence to
high-fidelity results with minimal high-fidelity evaluations (see publications on the
MDOB web page for references)
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1st Order Approximation/Model Management Optimization (AMMO) Framework
� Given a suite models of a physical phenomenon

– Approximations based on data fits (polynomial response surfaces, kriging
approximations, splines, etc.)

– Variable resolution (a single model evaluated on meshes of varying refinement)

– Variable-fidelity physics models (e.g., Euler equations vs. Navier-Stokes
equations)

� Idea

– For any optimization subproblem, replace the local Taylor series model with an
arbitrary model that satisfies first-order consistency conditions with respect to
a model designated as “truth”

� Can be imposed on any algorithm, in principle (e.g., Alexandrov and
Lewis, 1996)
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An Example of a 1st Order AMMO Algorithm

Initialize xc,�c

Do until convergence:
Select modelac with ac(xc) = f(xc); rac(xc) = rf(xc)

Solve approximately forsc = x� xc:

minimize
s

ac(xc + s)

subject to l � x � u

k s k
1

� �c

Compute�c �

f(xc)�f(xc+sc)

f(xc)�ac(xc+sc)
Acceptsc if f(xc) > f(xc + sc); otherwise reject
Update�c

End do

�c � 10�5 Reduce�c

10�5 < �c � 0:6 Leave�c unchanged

�c > 0:6 Increase�c
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Enforcing 1st Order Consistency Is Easy

ac(xc) = f(xc)

r ac(xc) = r f(xc)

� Can be relaxed to zero-order consistency theoretically

� Are easily enforced (Chang, Haftka, Giles, Kao, 1993):

– Givenfhi(x) and flo(x), define�(x) �

fhi(x)

flo(x)

– Givenxc, build �c(x) = �(xc) + r �(xc)
T (x � xc)

– Thenac(x) = �c(x)flo(x) satisfies the consistency conditions
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Convergence vs. Performance
� Convergence

– Need only a notion of two models, one arbitrarily assigned “high fidelity” or
“truth”, the other - “low fidelity”

– 1st-order consistency mimics the local Taylor series model behavior

– Consistency conditions + standard assumptions for a particular optimization
algorithm + boundedness assumptions on the 2nd-order lo-fi model information

=) global convergence to hi-fi critical points or solutions

– For general NLP, SQP-based AMMO is our currently preferred algorithm

� Performance

– Problem/model dependent; depends on the predictive properties of the lo-fi
model wrt improvement characteristics of the hi-fi model

– Worst-case scenario: conventional optimization for NLP

– Now looking into the behavior of the correction for analytical predictions of
performance
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Demonstration Problems: Aerodynamic Optimization

minimize Integrated quantities, such as �

L
D

or CD

subject to constraints on, e.g., pitching and rolling moment coefficients, etc.

xl � x � xu
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A Demonstration Problem: Aerodynamic Optimization of a 3D Wing

(AIAA-2000-0841, Alexandrov, Lewis, Gumbert, Green, Newman)

� Problem: minimize� L
D

s.t. nonlinear constraints

� Variable-resolution models: Euler equations on a variety of meshes

� Algorithms: based on SQP, augmented Lagrangian, a multilevel approach
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� Threefold improvement in terms of hi-fi function and derivative evaluations across
all AMMO algorithms tested
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Current Demonstration Problem: Multi-Element Airfoil
(AIAA-2000-4886, Alexandrov, Nielsen, Lewis, Anderson)

� A two-element airfoil designed to operate in a transonic regime — inclusion of
viscous effects is very important

� Governing equations: time-dependent Reynolds-averaged Navier-Stokes
A
@Q

@t
+
I

@


~Fi � ^ndl�
I

@


~Fv � ^ndl = 0;

where ~Fi and ~Fv are the inviscid and viscous fluxes, respectively

� Flow solver (FUN2D) – unstructured mesh methodology (Anderson, 1994)

� Sensitivity derivatives – hand-coded adjoint approach (Anderson, 1997)

� Conditions:

– M1 = 0:75

– Re = 9� 106

– � = 1� (global angle of attack)
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Current Demonstration Problem, cont.
� Hi-fi model – FUN2D analysis in RANS mode

� Lo-fi model – FUN2D analysis in Euler mode

� Computing on SGI OriginTM 2000, 4 R1OK processors

Viscous mesh:
10449 nodes and 20900 triangles

t/analysis� 21 min
t/sensitivity� 21 or 42 min

Inviscid mesh:
1947 nodes and 3896 triangles

t/analysis� 23 sec
t/sensitivity� 100 or 77 sec
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Viscous Effects
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� Boundary and shear layers are visible in the viscous case.
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Computational Experiments
� Objective function: minimize drag coefficient

� Case 1:(for visualization)

– Variables: angle of attack, y-displacement of the flap

– Solve problem with hi-fi evaluations alone using a commercial optimization
code (PORT, Bell Labs)

– Solve the problem with AMMO, PORT used for lo-fi subproblems

� Case 2:

– Variables: angle of attack, y-displacement of the flap, geometry description of
the airfoil; 84 variables total

– Same experiment

n.alexandrov@larc.nasa.gov Multidisciplinary Optimization Branch, NASA Langley Research Center
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Models
� Time/function for inviscid model negligible compared to viscous model

� However, their descent trends are reversed
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Example: AMMO Iteration History with 2 variables (surrogate functions)

Iteration 1. Starting point: � = 1:0, y-disp= 0:0

High-fidelity objective vs. corrected low-fidelity objective
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Example: AMMO Iteration History, cont.
� Similar effect in the next iteration

� Solution (� = 1:6305� , flap y-displacement= � 0:0048) located at
iteration 2

� C initial

D = 0:0171 at (� = 1�, flap y-displacement= 0)

� Cfinal

D = 0:0148, a decrease of approximately13:45%.
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Performance Summary

Notation: No. functions / No. Gradients

Test hi-fi eval lo-fi eval total t factor

PORT with hi-fi analyses, 2 var 14/13 � 12 hrs

AMMO, 2 var 3/3 19/9 � 2:41hrs � 5

PORT with hi-fi analyses, 84 var 19/19 � 35 hrs

AMMO, 84 var 4/4 23/8 � 7:2hrs � 5
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Concluding Remarks
� AMMO has yielded fivefold improvement

� Enforcing model consistency via Chang et al. correction works very well

� Derivative information is crucial when a lower-fidelity model does not
capture high-fidelity descent information

� For large problems, variable-fidelity physics modeling may be
recommended

� Current work

– Considering incorporation of a posteriorierror estimates into AMMO (with
Patera et al.)

– Considering larger problems

– Considering other models
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