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� Main theme of this and companion paper (AIAA-2000-4718)

– Analytical features of MDO problem formulation strongly influence the

practical ability of optimization algorithms to solve the MDO problem reliably

and efficiently. For instance, enabling disciplinary autonomy may come at a

price our ability to solve the resulting optimization problem reliably

� Subject of this paper (an algorithmic approach)

– A modular approach to MDO problem formulation with focus both on problem

structure and the need to implement and solve the problem reliably and

efficiently
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Outline
� A two-discipline model problem

� Relationship among several problem formulations

� Modular implementation

� Algorithmic interactions

� A comparative summary of formulation properties

� Concluding remarks
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The Two-Discipline Model Problem
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� Coupled MDA � the physical requirement that a solution satisfy both analyses

� Givenx = (s; l1; l2), we have

a1 = A1(s; l1; a2)

a2 = A2(s; l2; a1)
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SomeAlgorithmic and Structural Considerations
� Amenable to solution?

� Robust formulation?

– Does the structure respect the canonical problem structure?

– Do answers satisfy necessary conditions?

– Is it sensitive to small changes in parameters?

� Efficiency of solution?

� Autonomy of implementation / ease of transformation

– Claim: This is most labor-intensive part

� Autonomy of execution?

– Wish to follow organizational structure for design

– Wish to optimize wrt local variables only in disciplines
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Relationship among Optimization Problem Formulations

Write MDA as a1 = A1(s; l1; t2)

a2 = A2(s; l2; t1)

t1 = a1

t2 = a2

Start with Simultaneous Analysis and Design (SAND) formulation:

minimize

s;a1;a2;l1;l2;t1;t2

fSAND(s; a1; a2)

subject to g1(s; l1; a1) � 0

g2(s; l2; a2) � 0

a1 = A1(s; l1; t2)

a2 = A2(s; l2; t1)

t1 = a1

t2 = a2
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Relationship among Optimization Problem Formulations (cont.)
� Eliminate subsets of variables from SAND byclosingvarious subsets of

constraints=) get other formulations:

– Distributed Analysis Optimization (DAO): Eliminate a1; a2 as independent

variables by closing the disciplinary analysis constraints at every iteration of

optimization

– Fully Integrated Optimization (FIO): In addition, eliminate t1; t2 as

independent variables by closingt1 = a1 and t2 = a2.

– Optimization by Linear Decomposition (OLD): Eliminate l1; l2; t1; t2 as

independent variables via optimization subproblems (MDA remains)

– Collaborative Optimization (CO): Eliminate l1; l2 (but not t1; t2) via

optimization subproblems
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Autonomy/Modularity in Implementation
� Computational elements needed for optimization (in particular,

sensitivities) can be implemented autonomously by disciplines

� Can reconfigure the same set of computational elements to implement one
discipline or another

� All formulations discussed here require roughly the same amount of work
to implement
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Example: Sensitivities in DAO vs FIO

Consider DAO:

minimize

s;l1;l2;t1;t2

fDAO(s; t1; t2) = f(s; a1(s; l1; l2; t2); a2(s; l1; l2; t1))

subject to g0(s; t1; t2) � 0

g1(s; l1; t1) � 0

g2(s; l2; t2) � 0

t1 = a1(s; l1; l2; t2)

t2 = a2(s; l2; l2; t1);

where, given(s; l1; l2; t1; t2), a1 anda2 are found from

a1 �A1(s; l1; t2) = 0

a2 �A2(s; l2; t1) = 0:
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Example: Sensitivities in DAO vs FIO, cont.

For the objectivefDAO(s; t1; t2), we need

@f
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For the design constraintsg1(s; l1; t1) and g2(s; l2; t2) we need
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For the consistency constraintst1 � A1(s; l1; t2) = 0 and

t2 � A2(s; l2; t1) = 0 we need

@A1
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@l1
;
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@A2
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Example: Sensitivities in DAO vs FIO, cont.

Consider FIO:

minimize
s;l1;l2

f(s; a1(s; l1; l2); a2(s; l1; l2))

subject to g0(s; l1; a1(s; l1; l2); a2(s; l1; l2)) � 0

g1(s; l1; a1(s; l1; l2)) � 0

g2(s; l2; a2(s; l1; l2)) � 0;

wherea1 anda2 are computed in MDA

a1 = A1(s; l1; a2)

a2 = A2(s; l2; a1)
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Example: Sensitivities in DAO vs FIO, cont.

In FIO approach, we need to compute the sensitivities of the objective

fFIO(s; l1; l2) = f(s; a1(s; l1; l2); a2(s; l1; l2)):

By the chain rule,
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We compute the derivatives ofa1 anda2 by implicit differentiation of the
multidisciplinary analysis equations

a1 � A1(s; l1; a2) = 0

a2 � A2(s; l2; a1) = 0
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to be solved for the sensitivities ofa1 and a2 wrt (s; l1; l2). (Referred to as the

“generalized sensitivity equations” by Sobieski, 1990)
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Example: Sensitivities in DAO vs FIO, cont.
� Observe that the same elements are needed for FIO and DAO sensitivity

computations

� Can implement constituent elements with disciplinary autonomy ifdo not
integrate MDA via fixed-point iteration early

� The elements are integrated differently in FIO and DAO

� Analogous results for CO and OLD

� Conclusion: The same computational components are required
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Algorithmic Interactions
� Saw how, in principle, can re-arrange computational components

associated with one formulation and obtain components for another

� Re-arrangement may require substantial effort

� Now show how for some of the formulations, minor changes in an
optimization algorithm may yield an algorithm for solving another
formulation

� Straightforward to pass among some formulations=) facilitate the use of
hybrid approaches: may use one far from solution, another near solution
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Example: DAO vs FIO vs SAND(analysis and coupling constraints only)

Simplified FIO formulation: minimize

x

fFIO(x) � f(x; a1(x); a2(x));

where, givenx, we solve the MDA 
~A1(x)

~A2(x)
!

=
 

a1 �A1(x; a1(x); a2(x))

a2 �A2(x; a1(x); a2(x))
!

= 0

Simplified SAND formulation:

minimize

x;a1;a2

fSAND(x; a1; a2) � f(x; a1; a2)

subject to ~A1(x; a1; a2) = 0

~A2(x; a1; a2) = 0

Simplified DAO formulation:

minimize

x;a1;a2;t1;t2

fDAO(x; a1; a2)
subject to t1 � a1(x; t1; t2) = 0

t2 � a2(x; t1; t2) = 0
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Example: DAO vs FIO vs SAND, cont.

Wi — basis of the null-space associated with the derivative of the blockAi. Relying on
implicit differentiation and the derivations by Lewis, 1997, note the relationship among
the sensitivities for the three methods:

� Suppose,(x; a) is feasible with respect to MDA. Then the (projected) gradients at

(x; a) of FIO and SAND are related by

rxfFIO(x) = W

T
SAND(x; a)rx;afSAND(x; a);

whereWSAND denotes a particular basis for the null-space ofr ~AT in the SAND
approach.

� Suppose that(x; a) is feasible with respect to MDA. Then

W

T
DAOrx;afDAO(x; a) = W

T
SAND(x; a)rx;afSAND(x; a)

Can use these relationships to implement a reduced-basis optimization algorithm for the

three formulations with minimal modifications.
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Sketch of a conceptual algorithm

Consider one step of a reduced-basis algorithm for the SAND formulation:

1. Construct a local model of the Lagrangian about the current design.

2. Take a substep to improve feasibility.

3. Subject to improved feasibility, take a substep to improve optimality.

4. Set the total step to the sum of the substeps, evaluate and update.

� MDA after step 4 =) a corresponding algorithm for FIO.

� Solving the disciplinary equations as in DAO=) an algorithm for DAO.

� Passing between algorithms for distinct formulations is a straightforward step.
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Our Currently Favorite Formulation: Expanded DAO
minimize

s;�0;�1;�2;l1;l2;t1;t2

fDAO(s; t1; t2)

subject to g0(�0; t1; t2) � 0

g1(�1; l1; t1) � 0

g2(�2; l2; t2) � 0

t1 = a1(�1; l1; t2)

t2 = a2(�2; l2; t1)

�0 = s

�1 = s

�2 = s

� Expand variable space to relax the requirement that the disciplinary design
constraints be satisfied with the system-level values ofs

� Implementation autonomy, no MDA

� Single-level optimization problem - readily soluble
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Appendix: Comparative Summary of Formulations
� FIO: Single-level optimization, arbitrary coupling, some autonomy of

implementation, MDA required

� SAND: Single-level optimization, arbitrary coupling, some autonomy of
implementation, MDA not done, large optimization problem

� DAO: Single-level optimization, not for broadly coupled problems, autonomy of
implementation, some autonomy of execution

� CO: Bilevel optimization, autonomy of implementation and autonomy of execution
(distributed MDA), local variables handled in subproblems, no MDA, not for
broadly coupled problems, not robust, can be difficult to solve

� OLD: Bilevel optimization, MDA required, autonomy of implementation and some
autonomy of execution, not robust, can be difficult to solve
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