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The Multidisciplinary (Design) Optimization (MDO) 
Problem

                                  minimize f(x, u(x))
                                  subject to    h(x, u(x)) = 0
                                                  g(x, u(x)) ≥ 0

      Where u(x) is computed by solving the system C(x, u(x)) = 0 with

                                    C(x, u(x)) =

• x - design variables, u - state variables
• C(x, u(x)) - system of PDE or ODE - multidisciplinary analysis
• Natural block structure; blocks - state equations for coupled disciplines or 

analyses (e. g., aerodynamics, structures, controls, propulsion, cost, etc.)
• Problem is multiobjective 

C1(x, u1(x), ... , uM(x))
               . . .
CM(x, u1(x), ... , uM(x))

[ ]



Example - Motivation

High Speed Civil Transport (HSCT)

• Objective (HPCCP)
   Demonstrate TERAFLOP computing on a model MDO problem 

using heterogeneous computing network

• Consider
   A representative set of disciplines, design criteria, design 

variables, etc.



HSCT Baseline Description

• Insert the postscript file with the description here.



System Versions
• Low Fidelity

– Aerodynamic panel code
– Equivalent-plate structures code

• Medium Fidelity
– Euler CFD code
– FEM structural code
– Axisymmetric propulsion code

   One aeroelastic function evaluation takes ≈ 6 hours on a heterogeneous 
network of 4-5 machines or ≈ 20 hours on a dedicated machine

• High Fidelity
– N-S CFD code
– Adaptive FEM model
– 3-D propulsion code

   One aeroelastic function evaluation is expected to require 5-6 days on a 
dedicated machine, 2 days on a parallel one, 3-6 hours on a 64-
processor machine (O(102) hours total)
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The Sources of Expense

• Analyses and simulations are expensive both intrinsically and as a 
part of optimization process

– Addressed by research on approximations in engineering optimization 
(Monday talk in the session Novel Applications II)

• Multidisciplinary Analysis (MDA) is expensive
– In the HSCT example, the medium-fidelity case requires approximately 

5 Gauss-Seidel iterations
– Attempt to “break” the MDA loop
– This and the sheer size and complexity of the MDO problem are 

addressed by research on MDO methods or “formulations”



The “Perfect” Problem Formulation

• Efficient
• Autonomous, parallel / distributed processing of components
• Convergence / robustness
• Arbitrary strength and bandwidth of coupling
• Exploit full or partial separability
• Interactive (designer-in-the-loop) vs. automatic processing
• Flexible and varied optimization techniques
• Arbitrary number of variables and constraints
• Multiobjective capabilities
• Models and approximations of varying fidelity
• Ease of use / decomposition / coordination / implementation
• Correct answers



Heuristic vs. Rigorous Problem Formulations

Some Heuristic Formulations

u Non-hierarchical

u Hierarchical
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Collaborative Optimization: an Example of a Heuristic Formulation
(Schoeffler 1971, Braun et al. 1994)

The Original Problem:                           minimize J(x)
                                                                subject to  C(x) ≥ 0
where C(x) = 

C1(x)
  ...
CN(x)

[ ]
Partition x into {x1, ... , xN), not necessarily disjoint.

   System-Level Coordination
       minimize Jsyst(z)
       subject to   g*

j(z) = 0, j=1, ... , N

       Subproblem 1
min g1(x1) = Σ (xi1 - zi1)2

                + Σ (yi1 - zi1)2

subject to     C1(x1, ξ1) ≥ 0

       Subproblem N
min gN(xN) = Σ (xiN - ziN)2

                + Σ (yiN - ziN)2

subject to     CN(xN, ξN) ≥ 0

. . .

z1
zN

g*
1 g*

N

xi, ξi are inputs to analysis i; yi, Ci, gi are its outputs.



Collaborative Optimization (cont.)

+ Parallel, autonomous processing of disciplines

+ Consistent with design environment

+ Consistent with organizational structures

- Not robust

- Convergence properties in question

∆ Still undergoing changes
∆ Promising



Some Rigorous Formulations
(Schoeffler 1971, Cramer et al. 1993, Lewis 1997)

• The Original Problem

                                      min f(x, u(x))
where, given x, u(x) is computed by solving the system

                    C(x, u(x)) =

• The Conventional Approach (Variable Reduction, “Multidisciplinary Feasible” 
(MDF), All-in-One)

                                          min f (x, u1(x), ... , uM(x))
                                              x
     where, given the input design variables x, MDA is computed at each optimization 

iteration:

                                   Ci(x, u1(x), ... , uM(x)) = 0, i = 1, ... , M

C1(x, u1(x), ... , uM(x))
               . . .
CM(x, u1(x), ... , CM(x))

[ ]

+ / -



Some Rigorous Formulations (Cont.)

• The Nonlinear Programming Approach (“All-at-Once” (AAO), 
“Simultaneous Analysis and Design” (SAD or SAND), “No-Discipline Feasible (NDF))

                             minimize f(x, u1, ... , uM)

                                   x, u1, ... , uM

                                   subject to C1(x, u1, ... , uM) = 0
                                                          . . .
                                                   CM(x, u1, ... , uM) = 0
• The In-Between Approach ( “Individual Discipline Feasible” (IDF), “Some-

Discipline Feasible” (SDF))

    E.g.,    minimize f(x, u1, ... , ui(x,...,ui-1,ui+1,...,uM), ...,uM)
                x, u1, ... , ui-1, ui+1, ...,uM

                subject to C1(x, u1, ... , ui(x,...,ui-1,ui+1,...,uM), ...,uM) = 0
                                                          . . .
                              CM(x, u1, ... , ui(x,...,ui-1,ui+1,...,uM), ...,uM) = 0
and ui is computed by solving

                        Ci(x, u1, ... , ui(x,...,ui-1,ui+1,...,uM), ...,uM) = 0

                                          
+ / -

+ / -



A Multilevel Approach
(Alexandrov 1993, et al. 1997)

• Assuming the IDF approach, how does one solve a large block -
structured, fully-coupled or arbitrarily-coupled problem?

• The proposed method is a trust-region, block, null-space approach 
to solving large-scale NLP.

+ / -



The Multilevel Algorithm for Equality Constrained Optimization

Given xc ∈ Rn, δc
k > 0, k = 1, ..., M+1, and other  trust-region parameters,

do until convergence
y0 = xc

do k = 1, M (block-linearized feasibility)
Compute approximate solution sk to

minimize ||Ck(y k-1) + ∇Ck
T(yk-1) s||2

subject to ∇Cj
T(yj-1) s = 0, j = 1, ... , k-1

    ||s|| ≤ δc
k

yk = yk-1 + sk

end do
Compute (optimality step) approximation solution sM+1 to

minimize f(yM) + ∇fT(yM+1) s + 1/2 sTHMs
subject to ∇Cj

T(yj-1) s = 0, j = 1, ... , k-1

    ||s|| ≤ δc
k

yM+1 = yM + sM+1

sc = Σ M+1
 sk

Update the penalty parameters, xc, δc
k, k = 1, ... , M

end do

k=1



Computing the Steps

• Each substep must satisfy a sufficient decrease condition (Fraction of 
Cauchy Decrease) on the subproblem it solves.

• General block-linearly feasible steps (reduced basis steps) are especially 
appropriate for MDO:

1. Partition ∇C1
T(y0) = [B1 | N1], where B1 is an invertible matrix possibly 

obtained by column permutations.  Then computing
                                     s1

lin = [-B1
-1 C1(y0), 0]T

we have
                                     s1 =                       and y1 = y0 + s1

2. Partition ∇C2
T(y1) Z1 = [B2 | N2],

where           Z1 = 

     and continue.

δc
1 s1

lin

||s1
lin||

-B1
-1 N1

I
[ ]



Measuring Progress

• The Merit Function

        P(x; ρ1, ... , ρM) ≡ f(x) + Σ (Π ρj) ||Ck(x)||2

   E.g., for M=2,

        P(x; ρ1, ρ2) ≡ f(x) + ρ2( ||C2(x)||2 +ρ1 ||C1(x)||2)

   The augmented lagrangian can be used (and should be, for performance)

• The Model
M(sc; ρ1, ... , ρM) ≡ φ(sM+1) + Σ (Π ρj) ||Ck(yk-1) + ∇CT

k(yk-1)sk||2

                               quadratic model of the 
                            objective or the lagrangian

k=1 j=k

M M

M M

k=1 j=k



Other Features

• Updating the Penalty Parameters
– Extension of El-Alem scheme (1988, 1991)

• Updating the Trust-Region Radii
– Analysis accommodates a number of techniques (Alexandrov 

1997)

• Convergence Analysis
– Under “standard” assumptions, at least a subsequence of the 

generated sequence of iterates converges to a stationary point 
of the problem

• Numerical Testing
– On Hock & Schittkowski test set - comparable to NPSOL, 

KSOPT, CONMIN



Extension to MDO

• Include arbitrary first order approximations (Alexandrov 
1997)

• Extension to general nonlinear programming - equality 
and inequality constraints (in progress, Alexandrov, El-
Alem)

• The Problem:
min f(x)
s.t.  h(x) = 0
       g(x) ≤ 0

   f : Rn -> R,  h : Rn -> Rm,  g : Rn -> Rp, m < n, at least twice 
continuously differentiable.



Sketch of the Algorithm
Given xk ∈ Rn, λk, µk, Ak (indicators), ∆κ, and other trust-region parameters,
1. Compute sCP,g for g from xk, using Ak

   Compute Wk - an indicator matrix for sCP,g 

Compute approximate solution sg
k to

min ||Wk (gk + ∇gT
ksg)||2

     s.t.  ||sg|| ≤ τ1 ∆k, τ1 ∈ [0.5, 06] 
2. Compute Zg

k ≡ basis for N(Wk ∇gT
k)

Compute approximate solution sh
k to

min ||hk + (Zg
k ∇hk)T sh||2

s.t.  ||Zg
k sk|| ≤ τ2 ∆k, τ2 ∈ [0.6, 0.8]

3. Compute Zgh
k ≡ basis for N

Compute approximate solution st
k to

min model of the lagrangian reduced by Zgh
k

     s.t.  ||Zgh
kst|| ≤ √ ∆2

k - (||sk
h||2 + ||Zk

g sk
h||2)

4. Set  sk = sk
g + Zg

k sk
h + Zgh

k sk
t

                                                                                           . . .

∇hk

Wk ∇gT
k

[         ]



Computational Evaluation

• The Aerospike Engine Design Problem
– A realistic MDO problem of practical interest

• Develop and demonstrate MDO capabilities for SSTO engine 
concepts

• Assess performance of various approaches to MDO
• Several levels of fidelity are available

– Problem Features:
• Components:

• Aerodynamics, structures, trajectory, others
• Minimize GLOW (Gross Lift-Off Weight) subject to structural 

constraints
• One case: 16 variables, 596 structural constraints
• Multidisciplinary feasible formulation used as a base case
• ≈ 1 day to obtain solution (≈ 20 iterations) on a Sun ULTRA 1
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AEROSPIKE ENGINE
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AEROSPIKE MDO DOMAIN DECOMPOSITION
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Method Evaluation Project

• Difficulty
– Vary scarce computational evidence on basic algorithmic 

properties of MDO methods

• HPCCP office at NASA Langley funded a method evaluation project 
with MDOB and ESI, Inc.

– Selected an initial set of methods and MDO problems, and a 
large set of performance characteristics

– Preliminary report expected in October 1997

• MDO Test Suite
– MDO problems arranged by degree of complexity
– Access from MDOB homepage:
                http://fmad-www.larc.nasa.gov/MDOB
– Comments and contributions welcome!



Summary

 • MDO is a complex NLP with special structure
• Much work is being done on methods for MDO; considerable part is 

based on heuristics
• Here described a number of analytically rigorous methods and one 

method for solving strongly or arbitrarily coupled problems

Current work
– Constraints
– Multiple objectives
– Integration of approximations
– MDO issues at various design levels (conceptual, preliminary, detailed)
– Method evaluation and classification
– Demonstration on realistic problems

• For reports and software write to:  n.alexandrov@larc.nasa.gov


