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Multidisciplinary optimization (MDO)

MDO = systematic approaches to the design of complex, coupled systems.

Multidisciplinary refers to different aspects of the design problem (e.g.,
aerodynamics, structures, control, &c., for aircraft).

Here: MDO is portion of the design process that can be meaningfully
formulated as a nonlinear program (NLP).

This, of course, does not do justice to the real problem.
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Efficiency in solving MDO problems

e Effects of problem formulation

— Computational efficiency

— Robustness and convergence to solutions

— Disciplinary autonomy:  Allowing disciplinary design occur as
independently as possible

e Efficiency in problem integration.

e Computational efficiency of disciplinary components.

Why formulations?  Multidisciplinary analysis  FIO SAND DAO
Hierarchy CO Difficulties A conjecture



Problem formulation

Analytical features of MDO problem formulation strongly influence the
practical ability of optimization algorithms to solve the MDO problem
reliably and efficiently.



Problem formulation

Analytical features of MDO problem formulation strongly influence the
practical ability of optimization algorithms to solve the MDO problem
reliably and efficiently.

1 2 3 4 5 6 I
FIO 610 220 | 610 gl | 3234 | 5024 3730
CO | 15626 | 19872 | 1785 | 2102 | 837 | 40125 | 691058

DAO | 9530 | 8796 | 382 - 544 932 -

Cost of optimization in terms of the number of analyses required,
3 different formulations, 7 test problems.
Alexandrov and Kodiyalam (1998)
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Disciplinary analysis
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Disciplinary analysis % -
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Disciplinary analysis:

A’i(af’i;p’iasali) = 0.
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Multidisciplinary analysis: Two discipline example

Sail 5332

Tl (-‘.’1-2)

Disciplinary analysis 1 Disciplinary analysis 2

Tg(a-l)
i
T . Al(al Tl(a,g)'Sll) = 0
Multidisciplinary analysis (MDA): ’ T
Prnary ysis ( ) Asz(ag, To(a1);s,l2) = 0.
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Fully integrated optimization (FIO)

Disciplinary analysis 1

Disciplinary analysis 2

Rl(a-l) RQ(a?)
mir&in;ize f(s, Ri(a1), Ra(a9))
s,01,12
—> subject to  ¢i1(s,l1, Ri(a1)) > 0 [=<=—
QQ(S, ’!2: RQ(QQ)) 2 U:
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Fully integrated optimization (FIO)

Advantages:

e Uses extant MDA capability.

e Intermediate designs are physically sensible.
Disadvantages:

e Requires MDA capability.

e Limited disciplinary autonomy.
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Fully integrated optimization (FIO)

The NLP:

minimize  f(s, Ri(a1(s,l1,12)), Ra(as(s,l1,12)))

s,l1,l2

subject to  g1(s, 1, Ri(ai(s,l1,12))) >0
92(87127R2(a2(87l17l2))) Z 07

where &1(8, [1, 12), CL2<S, l1, lg) solve the MDA:

Ai(ar, Ti(az);s,l1) = 0
Ay(az, To(a1);s,l2) = 0.
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Simultaneous analysis and design (SAND)

Relax all coupling in the problem; all variables are independent:

minimize  f(s, Ri(a1), Ra(as2))

s,l1,l2,a1,a9

subject to gl(S, l1, Rl(al
(

Ai(ar, Th (a9
As(ag, Th(aq

— —
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Simultaneous analysis and design
Advantages:

e Reduced nonlinearity in the NLP.

e No expensive analyses when far from an optimal solution.

Disadvantages:

e Potential for a humongous number of variables in the NLP.

e Solution techniques from disciplinary analyses must be integrated with
the optimization algorithm.

e Intermediate designs may not be physically sensible.

e Role of disciplinary autonomy not clear.



Distributed analysis optimization (DAOQO)

Relax the coupling in the MDA, but preserve the disciplinary analyses:

S,ll,thﬂ’I.:‘ll,?Q,tl,tQ f(S’ /rl’ T2)
s.t. gi(s, l1, 1) >0
92(87 l27 TZ) Z 0

r1 = Ri(a1(s,l1,t1)) t1 = Ti(az(s,ls,t2))
ro = Ra(as(s,le,t2)) to = Ts(a1(s,l1,t1)),

where a1 = a1(s,11,t1), as = as(s,ls, t2) satisfy the disciplinary analyses:

Ai(ay; t1,8,01)) = 0
AQ(QQ; t2737l2) = 0.
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Distributed analysis optimization (DAQO)

Disciplinary analysis 1 [~ = Disciplinary analysis 2
tl NTl(a-Q) tg NTQ(Q—l)
r1 ~Ri(a1) STITQ f(s, r1,72) ro ~Ra(a2)
T1>T2>t1=t2
s.t. gl(s, ll, ?"1) Z 0
g2(s, la, 72) >0
r1 = Ri(ai(s, 1, 11))
ro = Ra(aa(s, la, t2))
s, 11 t1 = T1(as(s, la, t2)) s, Lo
to = To(ai(s, 1, 1)),
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Distributed analysis optimization (DAOQO)

Advantages:

e Conventional one-level NLP.

e More disciplinary autonomy than in FIO.

e Fewer independent variables than in SAND.
Disadvantages:

e Intermediate designs may not be physically sensible (though perhaps
“less infeasible” than in SAND).

e Disciplinary autonomy still limited.

DAO is similar to the Individual Discipline Feasible (IDF) formulation.
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Hierarchy of formulations

Various problem formulations can be viewed as being derived from SAND
through the elimination of variables.

SAND—all variables are independent (s,l1,l2,a1,a2).
Eliminate (a1, a2) via multidisciplinary analysis = FIO.

Introduce coupling variables (a12, az1)
+ eliminate (a1, az) via disciplinary analyses = DAO

Introduce coupling variables (a2, as1),
+ eliminate (a1, as2) via disciplinary analyses
+ eliminate (l1, 1) via disciplinary design constraints = 777
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Elimination of local design variables

One idea is to eliminate [1, 5 by solving disciplinary optimization problems
involving these variables. This leads to a bilevel program.

An illustration is an approach sometimes called collaborative optimization.
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5,71,72,t1,12
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Disciplinary problems:
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System-level problem:

min f(s,r1,72)
s,11,72,t1,t9
S.t. C(S,?“l,’l“g,tl,tg) = O,
Disciplinary problems:
min || 11— Ri(ai(s, b, 1)) 12 4 |l ta — Ta(ai(s, I1, 1)) |17
1
(1) s.t. gl(sallacLl(S?llatl)) >0
where a; = Al(S, ll,tl).
min || ry — Ra(aa(s, b2, 12)) 17 4+ 1| t1 — Ti(az(s, 12, t2)) ||?
2
(2) s.t. 92(87l27a2(87l27t2)) >0
where aos = AQ(S, lg, tg).
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Elimination of local design variables via CO

min || ™ — Rl(a-l) ||2 min || T — Rg(a-g) ||2
+|| ta — Ta(ar) | T 4t = Ta(ag) |I?
=T —_—
s.t. gl(S, [, (1-1) >0 s.t. gQ(S, [, (IQ) >0
a; = Ai(s, 1, t1). as = Ai(s, la, ta).
Tl:ilntg TQ:tl:tQ
ci(s, ri,t1,t2) ca(s,ra, t1,t2)
min f(s,r1,m2)
3=T13T29t13t2
s.t. C(S,?"l,?"g,tl,tg) =0
S S
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System-level constraints

Let [y(s,li,t2) and [x(s,lo,t;) be the solutions of the disciplinary
optimization problems.

One choice of system-level consistency constraints is:

c1(s, 1,70, t1,t2) = || r1— Ri(ai(s,l1,t1)) H2 + || t2 — To(a1(s,11,t1)) H2
co(s, 71,72, t1,t2) = | r2 — Ra(aa(s,la,t2)) ||* + || t1 — Ti(aa(s,l2,t2)) ||

ci(s,71,79,t1,t2) = 0 < Discipline 7 can find local design variables [; such
that the analysis output is consistent with the targets r; and ¢;.

We call such values of s, r;,t; realizable designs for Discipline 1.
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Elimination of local design variables

Advantages:
e Marked degree of disciplinary autonomy.
Disadvantages:

e Disciplinary autonomy exercised in auxiliary disciplinary optimization
problems.

e Bilevel program.

e Badly behaved system-level problem.
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Analytical difficulties in eliminating local design variables

Approaches that eliminate local design variables and enforce interdisciplinary
consistency via equality constraints will, in general, suffer from

e Nonsmoothness of the system-level constraints, or

e Degeneracy of the system-level constraints

at designs of interest (realizable designs).
Either can cause conventional NLP algorithms to be slow, or to fail.

We believe this explains computational difficulties reported with bilevel
problem formulations.

(NMA and RML; AIAA Journal (2001),
Optimization and Engineering (to appear))



What is possible?

CONJECTURE. In general, an algorithm for MDO can possess at most two
of the following three attributes:

e Computational autonomy.
e Computational efficiency.

e Computational robustness.
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