Problem formulation and modeling In
simulation-based design

Natalia M. Alexandrov! and Robert Michael Lewis?
Multidisciplinary Optimization Branch, NASA Langley Research Center

2Department of Mathematics, College of William & Mary

http://mdob.larc.nasa.gov

18 International Symposium on Mathematical Programming, 18-22 August 2003, Copenhagen

Traditional approach to simulation-based optimization

* Analysis (simulation)

— Given a vector of design variables x, a simulation or a system of
simulations computes responses u(x) of interest by solving a system
A(x,u(x)) =0

e Optimization
— Do until convergence

1. Build local models (usually Taylor series) of the objective and
constraints based on information computed directly by the high-
fidelity simulation

2. Compute a trial step by solving a local model-based subproblem

3. Use a globalization technique (e.g., trust regions) to improve
convergence

— Enddo
« But...

Features of realistic design problems

« Examples of difficulties heard in previous talks (e.g., Nielsen)
« Summary of limiting factors
— Modeling

* Functions are expensive and not robust

« Difficult to obtain reliable and affordable derivatives
— Optimization

+ Algorithms must be fault-tolerant to a high degree

 Derivative-based optimization is expensive for problems with high-
fidelity simulations

 Derivative-free optimization is prohibitively expensive for large
problems, although is becoming more practical (see, e.g., Giunta)

A remedy for expense of simulations

 Instead of local, Taylor series-based models, use models that
have better global approximation properties:
— Variable accuracy (converge to user-specified tolerance)
— Variable resolution (vary degree of mesh refinement)
— Variable-fidelity physics (e.g., inviscid flow vs. Navier-Stokes)
— Data fitting (kriging, response surfaces, reduced order, etc.)

« Some examples in these sessions (Campana, Giunta)
« At LaRC

— Address expense and lack of robustness in function evaluation via
Approximation and Model Management Optimization (AMMO,
Alexandrov et al.)

— Demonstrations with variable-fidelity physics and variable resolution
models in aerodynamic optimization

— Convergence to high-fidelity answers with currently 5-fold savings in
terms of high-fidelity simulations

 But...

Example: small multidisciplinary analysis (MDA)

Full HSCT 4 Analysis Procedures

Multidisciplinary optimization (MDO)

MDO = systematic approaches to the design of complex,
coupled systems

Multidisciplinary: different aspects of the design problem (e.g.,
controls, aerodynamics, structures, propulsion, etc. for
aerospace vehicle)

Design = Nonlinear Programming!

Limit discussion to the subset of the total design problem that
can be represented as a nonlinear program (NLP)

Efficiency considerations in solving MDO problems

« Computational efficiency of disciplinary components
* Problem synthesis (implementation)

— Disciplinary interfaces

— Data standards

— Computational frameworks
 Effect of problem formulation

— Computational efficiency/tractability

— Convergence and robustness

— Disciplinary autonomy
 Let disciplines design independently
« Keep local design variables in disciplines

Influence of formulation on performance

Example: HPCCP formulation study, Alexandrov & Kodiyalam, AIAA 1998-4884
Fully Integrated Optimization (FIO)

>

state variables
objective
constraints

Distributed Analysis Optimization

(DAO)

System Optimization

minimize f(x)
s.t. design constraints

Analysis; |€4— °**°* <— Analysis, 4J<_

Multidisciplinary Analysis (MDA)

design variables

Collaborative Optimization (CO)

System Optimization
minimize f(x)
s.t. design constraints

interdisciplinary consistency constraints

minimize f(x)

System Optimization

s.t. interdisciplinary consistency constraints

v

v

Subsystem Optimization

v

Analysis,

v

minimize inconsistency
s.t. disc. constraints

Subsystem Optimization
minimize inconsistency
s.t. disc. constraints

Analysisy ¢

Analysis,

!

Analysisy

Influence of formulation on performance

 Analytical features of MDO problem formulations, e.g., the
degree of disciplinary autonomy, directly affects the ability of
numerical algorithms to solve the problem reliably and

efficiently
1 2 3 4 5 6 7
FIO 610 220 610 81| 3234| 5024| 8730
DAO 9530| 8796 382 N/A 544 932 N/A
CO 15626 | 19872| 1785| 2102 837 | 40125|691058

Cost of optimization in terms of analyses for 7 MDO Test Suite problems

MDO Problem Synthesis / Implementation

Problem:
design for objective f with

Successful MDO-NLP usually in academic
environments (simulation codes open to
modification) or via ad hoc approaches

Realistic MDO

— Heroic software integration for MDA

— MDA = (usually) fixed-point iteration; too
rigid

— May leave no resources for computing
derivatives or experimenting with
optimization

— Difficult to get MDA-based objectives and
constraints automatically

(fixed-point procedure) — To reformulate the problem, need to

“unscramble” codes

« ..One-of-a-kind, monolithic implementations

sensitivities Want flexible and/or hybrid reconfigurable
formulations

Idea of reconfigurability

« Computational component-based approach to MDO
problem synthesis that allows for straightforward
transformation among problem formulations within
optimization algorithms

— All MDO formulations are related and share the basic
computational components

— Appropriate implementation enables re-use of
components in a straightforward way

« Long-term plan: Tools for formulation analysis and matching
with optimization algorithms to be included in computational
frameworks

Origins of reconfigurability

« The capacity for reconfigurability stems from the relationship
among formulations

« Two-discipline model problem:
|e.g., loads

s, 11 Disciplinary analysis 1

(e.g., Aerodynamics)

8,12 Disciplinary analysis 2

(e.g., Structures)

e Coupled MDA ~~ the physical requirement that a solution satisfy both analyses

e Givenx = (3,1'1,!2)., we have

ar = Ai(s li,a2)

az = Aa(s lz2,a1)

Simultaneous Analysis and Designh (SAND)

Write MDAas ay = Aj(s,li,12)
g = AE{SEEE!tl}
t] = a3
Relax all couplings; ta = ay
All variables independent
minimize f(s,t1,12)

sdy.0eaq.a9.84.t2

subject to

<
disciplinary constraints _

analysis constraints —————

cc1(8,11,a1) 2 0

f_'j{""“.. IL_'-..H:L} E 0

\

(a1 = Aq(s, 14, 12)

lag = Aag(s, la, 1)

consistency constraints \{ ly = a4

t2=[12

SAND, cont.

« Advantages
— No need for expensive analyses far from solution
— Reduced nonlinearity in NLP

« Disadvantages
— Analyses may not be readily available in residual form
— Potentially huge number of variables
— Analysis solution technigues must be integrated with optimization
— Intermediate designs may not be physically realizable
— Disciplinary autonomy unclear

 All other formulations may be viewed as derived from the
SAND formulation by eliminating a particular set of
iIndependent variables from the optimization problem via
closing a particular set of constraints or solving optimization
problems.

Distributed Analysis Optimization (DAO)

Close disciplinary consistency constraints;
relax the coupling in MDA; maintain disciplinary analyses

A DAO formulation 1s

minimize s.tq.1
55£15£21t15£2 f(e 2)

subjectto eq(s.ly.t1) > 0

| }disciplinaryconstraints
ca(s,la,12) > 0

t1 = aq(s,l1,12)

consistency constraints {
ty = az(s,lz,14),

where the disciplinary responses a4 (8, l1,13) and az(s, I3, t;) are found by closing
the disciplinary analysis constraints

a; = A(sli, i)
AE{S. ﬂg. f'-I].

5

(Versions known as Individual Discipline Feasible, In-Between, etc.)

DAO, cont.

« Advantages
— Some measure disciplinary autonomy
— Fewer design variables than in SAND
— Conventional single-level NLP

« Disadvantages

— Intermediate designs may not be physically realizable (although
perhaps less “disciplinary infeasible” than in SAND)

— Disciplinary autonomy limited — optimization problem deals with both
local and shared variables

Fully Integrated Optimization (FIO)

The corresponding FI1O formulation 1s

minimize f(s,t1(8,11,12),t2(8,11,12))

3,!1,.!2

subjectto eq(s,l1,¢:1(58,01,12)) >0

{_'-_}'[.Eh I‘:"_}. f-g{#:‘. :"-1‘ III-E } i :f‘ 0
where we compute ¢1(s,l1,12) and t2(s, l1,I2) by solving the MDA

a; = Ay(s,ly,12) £y
AQ{S.JE,MJ | 5

Ly

|
|

o 12.

FIO, cont.

« Advantages
— Smallest set of design variables
— Intermediate designs are realizable — can stop optimization away from
optimality for lack of resources
« Disadvantages
— Requires MDA
— Requires derivatives of MDA
— MD processes are difficult to converge
— Disciplinary autonomy limited

Hierarchy of formulations and reconfigurability

« Start with SAND — all variables independent (s,l,,1,,t;,1,,a,,a,)
« Eliminate (t,,t,,a,,a,) via MDA = FIO
- Eliminate (a,,a,) via disciplinary analyses = DAO
- Eliminate (a,,a,) via disciplinary analyses + eliminate (l,,l,) via disciplinary
design constraints = generally leads to bilevel optimization problems
— Significant degree of disciplinary autonomy
— Bilevel program with a badly behaved system-level problem
— Causes conventional algorithms to fail or be slow (NMA/RML, AIAA J.)

« Computational components remain unchanged

« Standard results on reduced derivatives tell us that the sensitivities in
DAQO and FIO are related to those in SAND via variable reduction

« Therefore, computational components of one formulation can be
reconfigured to yield those of another in the context specific algorithms

Reduced derivatives

Let

Given &, v(x) is computed from
S(xz,v(xz)) = 0.

Let W be the injection operator (W' is the reduction operator):

W = W (z,v) = :
B Rl -85, (z,v)Se(x,v) '

Define A by
A=Az, v) = — (Sy(z,v)) " Vyo(z,v)

and the Lagrangian L(x,v; A) by

L(z,v;A) = ¢(x, v) + AT S(x, v).

Reduced derivatives

The derivatives of ¢ and @ are related as follows:
Vo (z) = WT(m,v(m})?{m,w]qb(m,v(:r} :
— _
~—
Reduced gradient

@(m}—WT(?mﬂ¢+?mﬂS-A)W,
(@) (2,0) >

~—
Reduced Hessian of the Lagrangian

where

W = W(z,v(x))
?m,w}‘f’ = ?;., v]qﬁ(:r:, v(z))
??mﬁu)S v A = ??EJ]S(:B, v(z)) « Az, v(x))

= ZJ\?{”;

Barrier-SQP approach to SAND

Now illustrate reconfigurability in the context of a specific
class of algorithms, barrier-SQP methods

Let
Foon(s,l1,la,t1,t2) = f(s,t1,12)—p Zlﬂ ¢, (s, ly,t1) + Z In ¢} (s,12,15)
z J

Barrier-SQP solves a sequence of subproblems of the form:

minimize Foon(s by, la, 1y, 1)
55!15I25£15L27E15E2
subject to a; = Ay(s,ly,12)

az = Az(s,l2,t1)
tl = a4

o = ao,

Barrier-SQP approach to DAO

Let
Foo(syliy Iz, b, k) = f(s,ta,t2)—p [Inci(s.lit) +) Inch(s, o, 1s)
i F

Barrier subproblem for DAO 1s

minimize Fno(s,l1,12,11,12)
3,!1,!25t11t2

subjectto #; = aq(s,l1,12)

to = az(s,l2,t1),

where the disciplinary responses a4 (8, 11, ¢2) and az(s, l2, 1) are computed via the

disciplinary analyses:

a; = Ay(s,lq,13)
e = Ag(b‘.tg; f-l}.

Relationship among SAND, DAO, FIO Sensitivities

Then setting an appropriate (x, v) for each formulation, we have

T
v{'“"tl'-"i?!tl!ti]j%ﬂ@ = Wmov{sshJ:J—nt:,ﬂq,ﬂﬂjps.wn
and
2 o T 72
v‘:Ev!lsIE:tlsfrt]FmG - WDM?{EviluiﬂvtlaiﬂrﬂlTEEJFMWngl

A similar relationship exists between the sensitivities for solving the barrier-SQP
subproblems for SAND and FIO:

T ;
v{sailsiil 'E‘F[':' — WF[CJ?{EEII uiﬂ sb1,ta,aq -.-'12] FMIFD

and
2
Vst

. = . u T T . =] .
where the expressions for the reduction operators W__ and W_ _ are given 1n the paper.

Frp = WF[TGvE EAthma

(s,l1.02,t1 . t2,01,a2)

Solving barrier-SQP subproblem

Solving barrier subproblem 1s an iterative process, in which we approximately solve

minimize spTHp+ gTp
subjectto VSIip+ S =0
H - approximation to the Hessian of the Lagrangian

g - 15 the gradient of the Lagrangian

p - step 1n the iterative process

Reduced-basis approach to barrier-SQP subproblem

« For a specific choice of algorithm for solving the barrier-SQP
subproblem, can say even more about the relationship
among the computational elements needed to solve the three
formulations

« The relationship among the sensitivities means that it is
possible to implement an optimization algorithm for SAND so
that with a single modification we obtain an algorithm for
DAQO or FIO

Reduced-basis barrier-SQP for SAND

Algorithm 1: Reduced-basis algorithm for SAND
Initialization: Choose an initial (., v.).
Until convergence, do {

l. Compute the multiplier Asanp = —S, 'V Foun.

I~J

. Test for convergence.

Construct a local model of L about (., v.).

B

Take a step p™* to improve linear feasibility:

0
ptF = o
T
5. Subject to the improved linear feasibility, improve optimality:

minimize q"WTHWq+ (9 + HprLr)"™WTq
subject to || por + Waq || < r.

6. Set p = (P Pv) = Prr + Wy.
7. Evaluate (x4 ,v4) = (2., v.) + (Pes Pu) and update (z., v.), r. }

Reduced-basis SQP for FIO and DAO

Algorithm 2: Reduced-basis algorithm for SAND + analysis = FIO
Inmitialization: Choose an 1nitial o ..
Analysis: Solve Spo(x., ve(x:)) = 0 for v.(x,).
Until convergence, do {
1—6. These steps remain unchanged.
7. Analysis: Solve Spo(xy, v1) = 0for vy (x4); evaluate (x4, vy).

8. This step remains unchanged.

}

Algorithm 3: Reduced-basis algornthm for SAND + analysis = DAO
Initialization: Choose an initial (z., v.).
Analysis: Solve Spo(Ze, ve(x.)) = 0 for v.(z.).
Until convergence, do {
1—6. These steps remain unchanged.
7. Analysis: Solve Sy o(21,vy) = 0for vy (x); evaluate (z . vy).

8. This step remains unchanged.

Other algorithms

 Qutlined reconfigurable scheme should work for other
methods that handle inequalities via a penalty function
(e.g., augmented Lagrangian)

« Active set methods are likely to take more work

Concluding remarks

« MDO problem formulation directly affects the tractability of
the problem and efficiency of solution

» Conjecture: A method for MDO can possess at most two of
the following three attributes:
« Computational autonomy
« Computational robustness
« Computational efficiency

* Regardless of the formulation, there is a clear need for
flexible problem synthesis and easy reconfiguration

« Basic computational components combined with
transformations within specific algorithms form a promising
approach

