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Objective

Enable robust and rigorous design
optimization of large, multidisciplinary
engineering systems on distributed
computer networks at all stages of life-
cycle design, from system studies to
preliminary to detailed design.



Where MULTI Fits within the LCS Element

e “The life-cycle tool box will develop simulation-
based, variable-fidelity decision and analysis
tools with emphasis on cost, risk and
probabilistic modeling. These tools ... will
enable the advancement of engineering
practices through the modeling of life-cycle
processes, advanced optimization techniques
and robust design methods.”

ISE Program plan, Sept. 2000



Defintions:
Synthesis = Models + Formulations + Optimization Algorithms

e Models

— Variable-fidelity models from disciplines:

 Variable-fidelity physics, variable-resolution,
variable-accuracy, reduced order, reduced basis...

— Data-fitting models

e Problem formulations

— Statements of the design problem as a
mathematical programming problem
amenable to solution — single-level, bilevel,
or multilevel

« Optimization algorithms

— Recipes for solving problem formulations
translated into software



MULTI “Toolbox”: Overview of Components
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Models and Model Management for Design
(component overview continued)

Objective

— Enable design optimization with simulations by reducing the
cost of using high-fidelity models in MDO

Approach

— Place the computational load on lower-fidelity models while
maintaining convergence to high-fidelity results

Components

— Building variable-fidelity models for design

— Quantifying uncertainty in models and associated sensitivities
— Managing variable-fidelity models in optimization

Results to-date (under ASCOT/FAAST)

— For optimization with variable-fidelity model management,
fivefold savings in terms of high-fidelity analyses and
sensitivities (MDOB) compared to conventional design

— Rigorous bounds on outputs of PDE (MIT)



Problem Formulation for MDO
(component overview continued)

 Objective
— Develop and demonstrate provably robust MDO problem
formulations with approaches to problem decomposition,
synthesis, and subsystem autonomy
« Approach
— ldentify critical modeling and optimization requirements
— Analyze existing promising MDO problem formulations
— Develop robust problem formulations
— Develop guidelines for the use of formulations

e Results to-date
— Later in the talk



Optimization Algorithms for Design
(component overview continued)

 Objective
— Develop and demonstrate optimization methods,
iIncluding multilevel methods, for large-scale,

multiobjective, distributed optimization problem
formulations

e Results to-date

— Proposed a provably convergent multilevel method for
large-scale optimization

— Several home-grown and commercial alternatives for
multiobjective optimization are under consideration

— Demonstration problem identified — multiobjective cost-
performance optimization of an RLV



Some work to-date: Problem Formulation for MDO

e Motivation

— Analytical properties of MDO problem formulations have
a direct and powerful influence on the practical solution
of the resulting computational optimization problem

— Difficulties may be introduced by attempting to attain
desirable organizational and structural goals

— Current state of the art: “one-of-a-kind”, laborious and
time consuming MDO problem formulation and
iImplementation

e Goal

— Robust, modular, “interchangeable” formulations that
can be reliably and efficiently solved by existing
optimization algorithms



MDO Synthesis: One-of-a-Kind vs. Modular, Reusable
Problem: design for objective f with FUTURE
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Expend the effort at the outset to implement analysis and
sensitivity modules; easy to transform and expand: an
opportunity for a general framework

Laborious, expensive, one-time
integration, difficult to transform/
expand



Some Algorithmic and Structural Considerations in Problem
Formulations

e Amenable to solution?

e Robust formulation?

— Does the structure respect the canonical problem structure?
— Do answers satisfy necessary conditions?
— Are answers sensitive to small changes in parameters?

e Efficiency of solution?
« Autonomy of implementation / ease of transformation?
— Claim: This is the most labor intensive part

« Autonomy of execution?
— Wish to follow organizational structure for design
— Wish to optimize only wrt local variables in disciplines



The Two-Discipline Model Problem

8,1 Disciplinary analysis 1

Y

(e.g., Aerodynamics)

8,12 Disciplinary analysis 2

Y

(e.g., Structures)

e Coupled MDA ~ the physical requirement that a solution satisfy both analyses
e Given z = (s,1l1,12), we have

L1 = A1(S,£1,ﬂ,2)

AE(S'.-I'E! ﬂ'l)

asz



Conventional Approach: Fully Integrated Formulation (FIO)

minlinilize ;f(s,al(sghgiz)a32(3351352))

subject to  go(s,l1,a1(s,11,12),a2(s,1l1,12)) > 0
91(3351331(53113'{2)] Z 0
92(33"’23{12(3511312)) Z 0,

where a; and a3 are computed in MDA

a; = Al(S:llaﬂz)

az = Az(Salzaﬂrl)



Computational Properties of Distributed Formulations Based
on Discrepancy Functions

« “Discrepancy functions” —a device for
distributing a coupled problem into autonomous
subproblems

— Possibly do not perform multidisciplinary analysis at
each iteration of the design optimization procedure

— Quantify inconsistency among the shared variables and
outputs of the disciplinary analyses as a scalar, whose
value is obtained in disciplinary optimization
subproblems

— Drive the discrepancy function to zero at the solution of
the problem (i.e., multidisciplinary analysis satisfied at
the solution)

— Manipulate local disciplinary variables in disciplinary
optimization subproblems



Computational Properties of Distributed Formulations

e Distributed optimization

— Representatives: Collaborative Optimization,
Optimization by Linear Decomposition, Hybrids

— Local variables handled in subsystems
— Bilevel optimization

— Unavoidable breakdown of the necessary optimality
conditions or non-smoothness of the constraints

— Difficult and expensive to solve by existing optimization
methods
 An alternative: distributed analysis opt (DAQO)
— Single-level optimization
— Autonomy of implementation available
— Local variables treated at system level optimization
— Robust wrt optimization algorithms
— Autonomy of implementation similar to distributed opt
(Publications on LaRC LTRS)



Observations

All desirable properties of MDO formulations
(efficiency, robustness, subsystem autonomy of
execution, etc.) are likely not be attainable in a
single formulation

All formulations are related to each other and
require roughly the same amount of work to
Implement

Computational elements needed for optimization
can be implemented autonomously by disciplines

Can reconfigure the same set of computational
elements to implement one discipline or another

Enable hybrid approaches



Example: Computational Elements in F1IO and DAO

Recall F10:

minimize  f (s, a1(s, l1,12), az(s, 11, 12))

subject to go(s,l1,a1(s,l1,12),a2(s8,l1,12)) 2 0
91(33'!13&1(53113',’2)] 2 0
g2(s,1l2,a2(s,l1,12)) > 0,

where a; and a, are computed in MDA

a = Al('gaf'la 32)

A:Z(Sa"ﬂa ﬂ'l)

as



Example: Computational Elements in FIO and DAO, cont.

In FIO approach, we need to compute the sensitivities of the objective

frro(s,li,1l2) = f(s,ai1(s,l1,12), az2(s,11,12)).

By the chain rule,
dfri0 _ ﬂ_|_ of Oa, n Of Oax
0s ds da1 Os daz Os
Ofrro = Of Oaax n Of Oaz
ol daq Ol das 0l
Ofrro _ 9f da " Of Bas
Ol da, 0Ol, das 0Ol,

We compute the derivatives of a; and a; by implicit differentiation of the

multidisciplinary analysis equations

ai —Al(ﬂ,fl,ﬂg) — U

|
=

o — AQ(S, l’.g._.ﬂ]_)



This yields

A4 da, 0A,
I "~ das Os _ Os
_9A: I daz | 8A, |’
da, Os Os
dA; da, dA,
I = dao ol _ ol
_0A; T das - ?
31’11 3{1 0
and 5
JA ai
I - 3'121 Ol _ .
_ 94, 7 daz | DA
da, Olo Ol

to be solved for the sensitivities of a; and a, wrt (s,11,12). (Referred to as the

‘““generalized sensitivity equations™ by Sobieski, 1990)



Example: Computational Elements in FIO and DAO, cont.
Consider the Distributed Analysis Optimization approach (DAO):

minimize fDAD (S, fl, tz) = f(ﬂg a3 (53 f,l, '!23 t2)3 ‘[12(33 "’13 £23 tl))

B,a! 1 ,a!g,t 1 ,tg

subjectto go(s,t1,12) > 0
g1(s;l1,11) > 0
ga2(s,la,t3) > 0
ti1 = aq1(s,l1,13,13)

tg —_ ﬂg(sjlg,lgjtl),
where, given (s,11,1l2,%t1,%t3),a, and a, are found from

ﬂl_Al(sallatZ) = 0
ﬂg—Ag(S,f.z,tl) = 0.



Example: Computational Elements in FIO and DAO, cont.

For the objective fpa0o(s,t1,%2), we need

of of of
Os’ 8ty 9t

For the design constraints g, (s, l;,%,) and g5 (s, 2, t2) we need

dg: 0g1 09g1 - dg, dgz 09g-
ds’ 8l, ot, 8s’ Ol, 8ty

For the consistency constraints £y — A;(s,l1,t2) = 0 and

to — Ag(S,Iz,tl) = 0 we need

OA, A, HA; _ A, OA, OA,
8s ' Ol 0Ot, ds  8l, Oty




Algorithmic Interactions

The same elements needed for FIO and DAO (and all
distributed MDO formulations)

Can implement elements with disciplinary autonomy if do
not integrate MDA via fixed-point iteration early

Elements integrated differently in FIO and DAO

Can re-arrange computational components associated with
one formulation and obtain components for another (may
require substantial effort)

For some formulations

— Minor changes in an optimization algorithm yield an algorithm
for solving another formulation

— Straightforward to pass among some formulations =enable
hybrid approaches: may use one far from solution, another
near solution

(Details can be found in publications)



Summary: MDO Synthesis: One-of-a-Kind vs. Modular, Reusable

Problem: design for objective f with FUTURE

= =

11 1P

(fixed-poin* 'prccedure)

ML.A
sensitivitic s

Expend the effort at the outset to implement analysis and
sensitivity modules; easy to transform and expand: an
opportunity for a general framework

Laborious, expensive, one-time
integration, difficult to transform/
expand



Major Open Issues

MDA for strongly coupled problems

Variable-fidelity model management for
MDO synthesis

The most appropriate approach to
multiobjective optimization

A reliable distributed optimization
approach

A large-scale demonstration problem



FYO1l Plans

Participants
— LaRC/MDOB, ODU, William & Mary

Process-based cost models

— Develop cost models for launch vehicle wing and
fuselage

MDO problem formulations

— Complete analysis of modular MDO synthesis
techniques in the context of FIO and one distributed
problem formulation

Multiobjective optimization algorithms

— Develop or select a preliminary suite of multiobjective
MDO tools

Demonstration

— Demonstrate multiobjective optimization on a medium-
sized cost-performance launch vehicle MDO problem



